381,484 research outputs found

    Nano-scale reservoir computing

    Full text link
    This work describes preliminary steps towards nano-scale reservoir computing using quantum dots. Our research has focused on the development of an accumulator-based sensing system that reacts to changes in the environment, as well as the development of a software simulation. The investigated systems generate nonlinear responses to inputs that make them suitable for a physical implementation of a neural network. This development will enable miniaturisation of the neurons to the molecular level, leading to a range of applications including monitoring of changes in materials or structures. The system is based around the optical properties of quantum dots. The paper will report on experimental work on systems using Cadmium Selenide (CdSe) quantum dots and on the various methods to render the systems sensitive to pH, redox potential or specific ion concentration. Once the quantum dot-based systems are rendered sensitive to these triggers they can provide a distributed array that can monitor and transmit information on changes within the material.Comment: 8 pages, 9 figures, accepted for publication in Nano Communication Networks, http://www.journals.elsevier.com/nano-communication-networks/. An earlier version was presented at the 3rd IEEE International Workshop on Molecular and Nanoscale Communications (IEEE MoNaCom 2013

    Near-Field Scanning Microwave Microscopy in the Single Photon Regime

    Get PDF
    The microwave properties of nano-scale structures are important in a wide variety of applications in quantum technology. Here we describe a low-power cryogenic near-field scanning microwave microscope (NSMM) which maintains nano-scale dielectric contrast down to the single microwave photon regime, up to 10910^{9} times lower power than in typical NSMMs. We discuss the remaining challenges towards developing nano-scale NSMM for quantum coherent interaction with two-level systems as an enabling tool for the development of quantum technologies in the microwave regime

    Wafer scale nano-membranes supported on a silicon microsieve

    Get PDF
    A new micromachining method to fabricate wafer scale, atomically smooth nano-membranes is described. The delicate membrane is supported on a robust silicon microsieve fabricated by plasma etching. The supporting sieve is micromachined independently of the nano-membrane, which is later fusion bonded to it. The transferred thin-film membrane can be dense, porous or perforated according to the application desired. One of the main application areas for such membranes is in fluidics, where the small thickness and high strength of the supported nano-membranes is a big advantage. The novel method described enables to easily up-scale and interface micro or nano-membranes to the macro-worl

    Development of a Reference Wafer for On-Wafer Testing of Extreme Impedance Devices

    Get PDF
    This paper describes the design, fabrication, and testing of an on-wafer substrate that has been developed specifically for measuring extreme impedance devices using an on-wafer probe station. Such devices include carbon nano-tubes (CNTs) and structures based on graphene which possess impedances in the κ Ω range and are generally realised on the nano-scale rather than the micro-scale that is used for conventional on-wafer measurement. These impedances are far removed from the conventional 50- reference impedance of the test equipment. The on-wafer substrate includes methods for transforming from the micro-scale towards the nano-scale and reference standards to enable calibrations for extreme impedance devices. The paper includes typical results obtained from the designed wafer
    • …
    corecore