1,116 research outputs found

    Dynamic energy budget approach to evaluate antibiotic effects on biofilms

    Get PDF
    Quantifying the action of antibiotics on biofilms is essential to devise therapies against chronic infections. Biofilms are bacterial communities attached to moist surfaces, sheltered from external aggressions by a polymeric matrix. Coupling a dynamic energy budget based description of cell metabolism to surrounding concentration fields, we are able to approximate survival curves measured for different antibiotics. We reproduce numerically stratified distributions of cell types within the biofilm and introduce ways to incorporate different resistance mechanisms. Qualitative predictions follow that are in agreement with experimental observations, such as higher survival rates of cells close to the substratum when employing antibiotics targeting active cells or enhanced polymer production when antibiotics are administered. The current computational model enables validation and hypothesis testing when developing therapies.Comment: to appear in Communications in Nonlinear Science and Numerical Simulatio

    Unifying Contests: from Noisy Ranking to Ratio-Form Contest Success Functions

    Get PDF
    This paper proposes a multi-winner noisy-ranking contest model. Contestants are ranked in a descending order by their perceived outputs, and rewarded by their ranks. A contestant's perceivable output increases with his/her autonomous effort, but is subject to random perturbation. We establish, under plausible conditions, the equivalence between our model and the family of (winner-take-all and multi-winner) lottery contests built upon ratio-form contest success functions. Our model thus provides a micro foundation for this family of often studied contests. In addition, our approach reveals a common thread that connects a broad class of seeming disparate competitive activities and unifies them in the nutshell of ratio-form success functions.Multi-Winner Contest; Contest Success Function; Noisy Ranking

    Unifying Contests: from Noisy Ranking to Ratio-Form Contest Success Functions

    Get PDF
    This paper proposes a multi-winner noisy-ranking contest model. Contestants are ranked in a descending order by their perceived outputs, and rewarded by their ranks. A contestant's perceivable output increases with his/her autonomous effort, but is subject to random perturbation. We establish, under plausible conditions, the equivalence between our model and the family of (winner-take-all and multi-winner) lottery contests built upon ratio-form contest success functions. Our model thus provides a micro foundation for this family of often studied contests. In addition, our approach reveals a common thread that connects a broad class of seeming disparate competitive activities and unifies them in the nutshell of ratio-form success functions.Multi-Winner Contest; Contest Success Function; Noisy Ranking

    From Micro to Macro: Uncovering and Predicting Information Cascading Process with Behavioral Dynamics

    Full text link
    Cascades are ubiquitous in various network environments. How to predict these cascades is highly nontrivial in several vital applications, such as viral marketing, epidemic prevention and traffic management. Most previous works mainly focus on predicting the final cascade sizes. As cascades are typical dynamic processes, it is always interesting and important to predict the cascade size at any time, or predict the time when a cascade will reach a certain size (e.g. an threshold for outbreak). In this paper, we unify all these tasks into a fundamental problem: cascading process prediction. That is, given the early stage of a cascade, how to predict its cumulative cascade size of any later time? For such a challenging problem, how to understand the micro mechanism that drives and generates the macro phenomenons (i.e. cascading proceese) is essential. Here we introduce behavioral dynamics as the micro mechanism to describe the dynamic process of a node's neighbors get infected by a cascade after this node get infected (i.e. one-hop subcascades). Through data-driven analysis, we find out the common principles and patterns lying in behavioral dynamics and propose a novel Networked Weibull Regression model for behavioral dynamics modeling. After that we propose a novel method for predicting cascading processes by effectively aggregating behavioral dynamics, and propose a scalable solution to approximate the cascading process with a theoretical guarantee. We extensively evaluate the proposed method on a large scale social network dataset. The results demonstrate that the proposed method can significantly outperform other state-of-the-art baselines in multiple tasks including cascade size prediction, outbreak time prediction and cascading process prediction.Comment: 10 pages, 11 figure

    Distribution and asymptotics under beta random scaling

    Get PDF
    Let X,Y,B be three independent random variables such that XX has the same distribution function as Y B. Assume that B is a Beta random variable with positive parameters a,b and Y has distribution function H. Pakes and Navarro (2007) show under some mild conditions that the distribution function H_{a,b} of X determines H. Based on that result we derive in this paper a recursive formula for calculation of H, if H_{a,b} is known. Furthermore, we investigate the relation between the tail asymptotic behaviour of X and Y. We present three applications of our asymptotic results concerning the extremes of two random samples with underlying distribution functions H and H_{a,b}, respectively, and the conditional limiting distribution of bivariate elliptical distributions.Comment: 12 page

    The statistical laws of popularity: Universal properties of the box office dynamics of motion pictures

    Full text link
    Are there general principles governing the process by which certain products or ideas become popular relative to other (often qualitatively similar) competitors? To investigate this question in detail, we have focused on the popularity of movies as measured by their box-office income. We observe that the log-normal distribution describes well the tail (corresponding to the most successful movies) of the empirical distributions for the total income, the income on the opening week, as well as, the weekly income per theater. This observation suggests that popularity may be the outcome of a linear multiplicative stochastic process. In addition, the distributions of the total income and the opening income show a bimodal form, with the majority of movies either performing very well or very poorly in theaters. We also observe that the gross income per theater for a movie at any point during its lifetime is, on average, inversely proportional to the period that has elapsed after its release. We argue that (i) the log-normal nature of the tail, (ii) the bimodal form of the overall gross income distribution, and (iii) the decay of gross income per theater with time as a power law, constitute the fundamental set of {\em stylized facts} (i.e., empirical "laws") that can be used to explain other observations about movie popularity. We show that, in conjunction with an assumption of a fixed lower cut-off for income per theater below which a movie is withdrawn from a cinema, these laws can be used to derive a Weibull distribution for the survival probability of movies which agrees with empirical data. The connection to extreme-value distributions suggests that popularity can be viewed as a process where a product becomes popular by avoiding failure (i.e., being pulled out from circulation) for many successive time periods. We suggest that these results may apply to popularity in general.Comment: 14 pages, 11 figure

    On Outage Probability and Diversity-Multiplexing Tradeoff in MIMO Relay Channels

    Full text link
    Fading MIMO relay channels are studied analytically, when the source and destination are equipped with multiple antennas and the relays have a single one. Compact closed-form expressions are obtained for the outage probability under i.i.d. and correlated Rayleigh-fading links. Low-outage approximations are derived, which reveal a number of insights, including the impact of correlation, of the number of antennas, of relay noise and of relaying protocol. The effect of correlation is shown to be negligible, unless the channel becomes almost fully correlated. The SNR loss of relay fading channels compared to the AWGN channel is quantified. The SNR-asymptotic diversity-multiplexing tradeoff (DMT) is obtained for a broad class of fading distributions, including, as special cases, Rayleigh, Rice, Nakagami, Weibull, which may be non-identical, spatially correlated and/or non-zero mean. The DMT is shown to depend not on a particular fading distribution, but rather on its polynomial behavior near zero, and is the same for the simple "amplify-and-forward" protocol and more complicated "decode-and-forward" one with capacity achieving codes, i.e. the full processing capability at the relay does not help to improve the DMT. There is however a significant difference between the SNR-asymptotic DMT and the finite-SNR outage performance: while the former is not improved by using an extra antenna on either side, the latter can be significantly improved and, in particular, an extra antenna can be traded-off for a full processing capability at the relay. The results are extended to the multi-relay channels with selection relaying and typical outage events are identified.Comment: accepted by IEEE Trans. on Comm., 201
    corecore