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Let X, Y , B be three independent random variables such that X has the same distribution
function as Y B . Assume that B is a beta random variable with positive parameters α,β

and Y has distribution function H with H(0) = 0. In this paper we derive a recursive
formula for calculation of H , if the distribution function Hα,β of X is known. Furthermore,
we investigate the relation between the tail asymptotic behaviour of X and Y , which is
closely related to asymptotics of Weyl fractional-order integral operators. We present three
applications of our asymptotic results concerning the extremes of two random samples
with underlying distribution functions H and Hα,β , respectively, and the conditional
limiting distribution of bivariate elliptical distributions.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let X, Y , B be three independent random variables such that

X
d= Y B, (1.1)

where
d= stands for equality of the distribution functions. In our context the random variable B plays the role of a random

scaling or multiplier. Clearly, if the distribution functions of B and Y are known, then the distribution function of X can
be easily determined. In various theoretical and practical situations the question of interest is whether the distribution
function of Y can be determined provided that those of X and B are known. Indeed, random scaling of Y by B is treated
in several papers and different contexts, see for instance the recent contributions Tang and Tsitsiashvili [38,39], Jessen and
Mikosch [20], Tang [36,37], Pakes [30], Pakes and Navarro [31], Beutner and Kamps [5,6], Liu and Tang [20].

Unless otherwise stated, in this article we fix B to be a beta random variable with positive parameters α,β . If H denotes
the distribution function of Y , then the distribution function of X (denoted by Hα,β) is defined in terms of H and both
parameters α,β . If Y is another beta random variable, then X is the product of two such beta random variables, which
have been studied extensively in the literature, see Galambos and Simonelli [14], Nadarajah [26], Nadarajah and Kotz [27],
Beutner and Kamps [5] and the references therein.

Our main impetus for dealing with the beta random scaling comes from Pakes and Navarro [31] which paves the way for
the distributional and asymptotic considerations in this paper. Theorem 2.2 therein gives an explicit formula for the calcu-
lation of the distribution function H , provided that Hα,β satisfies some weak growth restrictions on its derivatives. Utilising
the aforementioned theorem, we show in this paper that the distribution function H can be calculated iteratively without
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imposing any additional assumption on Hα,β . This iterative inversion may lack the elegance of the explicit formula in Pakes
and Navarro [31], but it turns out to be quite useful in asymptotic contexts where we can define the tail behaviour of the
survivor function of Y when that of the survivor function of X is known, and vice-versa.

We present three applications of our asymptotic results:

(a) Determining which maximal domain of attraction contains Hα,β when the membership of H is known;
(b) The derivation of conditional limiting results for bivariate elliptical random vectors; and
(c) New estimators for the conditional distribution function and the conditional quantile function of bivariate elliptical

random vectors allowing one component of the random vector to grow to infinity.

The paper is organized as follows. In the next section we give some preliminary results. The main result of Section 3 is
the iterative inversion for Hα,β – Theorem 3.3 below. In Section 4 we investigate the asymptotic relation of the survivor
function of X and Y under conditions arising in extreme value theory, showing in particular that H is attracted to an
extreme value distribution if and only if Hα,β is attracted to the same distribution. The direct implications are formulated
(in Section 7) in a generality which subsumes the particular case of beta scaling. Conditional limiting results and estimation
of conditional distribution function for bivariate elliptical random vectors is discussed in Sections 5 and 6. All proofs and
some related results are relegated to Section 7. We conclude the paper with an Appendix A.

2. Preliminaries

We introduce notation and then discuss some properties of the Weyl fractional-order integral operator.
We use notation such as X ∼ F to mean that X is a random variable with distribution function F , and F := 1 − F

denotes the corresponding survivor function. The upper endpoint of the distribution function F is denoted by rF and its
lower endpoint by lF , and similarly for other distribution functions. If α,β > 0, then beta(α,β) and gamma(α,β) denote
respectively the beta and the gamma distributions with corresponding density functions

(
B(α,β)

)−1
xα−1(1 − x)β−1, x ∈ (0,1), and

βα

Γ (α)
xα−1 exp(−βx), x ∈ (0,∞),

where B(α,β) is the beta function and Γ (α) is the Euler gamma function. Since beta distributed random variables appear
below in several instances, we use exclusively the notation Bα,β for a beta random variable with parameters α,β . On
occasion it is convenient to extend the definition to understand P {B0,β = 0} = 1 if β > 0 and P {Bα,1 = 1} = 1 if α > 0.
Unless otherwise stated, factors in products of random variables are assumed to be independent.

Next, let β ∈ (0,∞) and define the Weyl fractional-order integral operator Iβ acting on real-valued measurable functions
h defined on (0,∞) by

(Iβh)(x) := 1

Γ (β)

∞∫
x

(y − x)β−1h(y)dy, x > 0. (2.1)

We extend the allowable range of β by defining (consistently) I0h := h. Finally, we write h ∈ Iβ if

∞∫
ε

xβ−1
∣∣h(x)

∣∣dx < ∞ (2.2)

is satisfied for all ε > 0.
Pakes and Navarro [31] assert that Iβh(x) < ∞ for x > 0 if (2.2) holds. This certainly is the case if β � 1. However, if

0 < β < 1, then the strongest possible general assertion is that Iβh(x) < ∞ for almost all x > 0. The following example
shows that if β < 1, then Iβh(x) can take infinite values. Let α > 0 and h(y) = |y − 1|−α if 0 < |y − 1| < 1 and h(y) = 0
if y � 2. Then Iβh(x) < ∞ for x > 0 iff (if and only if) α + β < 1, and otherwise the fractional integral is finite iff x �= 1. If
β < 1 and (2.2) holds, and if for some δ > 0 we have also that

δ+x∫
x

(y − x)β−1
∣∣h(y)

∣∣dy < ∞, x > 0, (2.3)

then Iβh(x) < ∞ for all x > 0. A sufficient condition for (2.3) is that h is locally bounded in (0,∞). Monograph accounts of
the Weyl fractional-order integral such as Miller and Ross [25] impose essentially both conditions (2.2) and (2.3). If these
hold, then Iβh is continuous in (0,∞).

The fundamental results about Iβ that we use are collected as Lemma A.1.
If h is the density function of a positive random variable Y ∼ H and if E{Y β−1} < ∞, then h ∈ Iβ . The Weyl fractional-

order integral operator is closely related to the beta random scaling of Y . To see this, let α,β > 0, and define the power
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function ps by

ps(x) := xs, s ∈ R, x > 0.

Suppose that Bα,β is independent of Y and define the beta scaled version of Y as the random variable

X
d= Y Bα,β ∼ Hα,β . (2.4)

Eq. (14) in Pakes and Navarro [31] asserts that

Hα,β(x) = Γ (α + β)

Γ (α)
xα(Iβ p−α−β H)(x), x > 0. (2.5)

This relation can be inverted to recover H from Hα,β , as shown by Pakes and Navarro [31, Theorem 2.2]. Theorem A.2
expresses this fact in a slightly different way.

Note in passing that the Weyl fractional-order integral operator is encountered in two important topics in statistical
applications, viz.: (a) size and length biased probability laws (see e.g., Pakes [30], Pakes and Navarro [31]); and (b) the
Wicksell problem (see e.g., Reiss and Thomas [34]).

We will need to use a Stieltjes version of the Weyl operator Iβ , defined as follows. Fix a measurable weight function g
defined in (0,∞) and a constant β > 0. Let Dβ,g denote the set of distribution functions H with lH � 0 satisfying

∞∫
ε

xβ−1
∣∣g(x)

∣∣dH(x) < ∞, ∀ε > 0.

If H ∈ Dβ,g we define

(Jβ,g H)(x) := 1

Γ (β)

∞∫
x

(y − x)β−1 g(y)dH(y), x > 0, (2.6)

which is finite for almost every positive x, and for all positive x if β � 1. Thus Jβ,g defines the Weyl–Stieltjes fractional-
order integral operator acting on Dβ,g .

In our notation (when it exists) g(n) := Dn g stands for the n-fold derivative of some real function g . We write simply Dg
if n = 1.

3. Calculation of H

Let X, Y , Bα,β related by (2.4), be as above. In this section our main interest is the determination of H from the known
form of Hα,β . As already mentioned, an explicit formula is presented as Theorem 2.2 in Pakes and Navarro [31] (see (A.6)
below). If β ∈ (0,1], then the only requirement for the validity of their theorem is that Hα,β(0) = 0, which obviously is
fulfilled whenever H(0) = 0. The following well-known multiplicative property of beta random variables is the key to our
iterative version of Theorem 2.2 in the aforementioned paper. Specifically, if λ ∈ (0, β), then

Bα,β
d= Bα,λBα+λ,β−λ.

Consequently, (2.4) implies

X
d= Y Bα,β

d= Y Bα,λBα+λ,β−λ. (3.1)

Theorem 2.2 of Pakes and Navarro [31] and (3.1) implies the following result:

Theorem 3.1. Let α,β be two positive constants, and let X, Y , Bα,β be independent random variables satisfying (2.4) with X ∼ Hα,β ,
Y ∼ H, and H(0) = 0.

(i) If λ ∈ (0, β), then

Hα,β(x) = Γ (α + β)

Γ (α)
xα+λ

(
Iβ−λp−β(Iλp−α−λH)

)
(x), ∀x ∈ (0, rH ). (3.2)

(ii) If β − λ ∈ (0,1], and δ ∈ [0,1) is such that β − λ + δ = 1, then

Hα,λ(x) = Γ (α + λ)

Γ (α + β)
xα+β

[
(α + λ)(Iδ p−α−λ−1 Hα,β)(x) + (Jδ,p−α−λ Hα,β)(x)

]
, ∀x ∈ (0, rH ). (3.3)
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We state next a simple corollary which is of some interest in the context of the Weyl fractional-order integral operator.

Corollary 3.2. Let H be a distribution function on R such that H(0) = 0. Then for any x ∈ (0, rH ) we have

xα−1(Jβ,p−α−β+1 H)(x) = (Dpα Iβ p−α−β H)(x) = −(Dpα Iβ p−α−β H)(x). (3.4)

Moreover, if H possesses the density function h, then

(Iβ p−α−β+1h)(x) = α(Iβ p−α−β H)(x) + x
(

Iβ D(p−α−β H)
)
(x), ∀x ∈ (0, rH ). (3.5)

The main result of this section is the following iterative formula for computing H when Hα,β is known.

Theorem 3.3. Let X ∼ Hα,β , Y ∼ H and Bα,β , α,β > 0 be three independent random variables satisfying (2.4) such that Hα,β(0) = 0.
If β0 := β > β1 > · · · > βk > βk+1 := 0, with k ∈ {0,N} and δi, λi , i � k + 1 are constants such that

λi := βi−1 − βi ∈ (0,1], δi := 1 − λi, i = 1, . . . ,k + 1, (3.6)

then we can construct distribution functions H0 := H, H1, . . . , Hk+1 = Hα,β such that

Hi−1(x) = Γ (α + βi)

Γ (α + βi−1)
xα+βi−1

[
(α + βi)(Iδi p−α−βi−1 Hi)(x) + (Jδi ,p−α−βi

Hi)(x)
]
, ∀x ∈ (0, rH ). (3.7)

Remark 3.4.

(a) Let Bi
d= Bαi ,βi , i � 1 be independent beta random variables and independent of Y ∼ H . If the random variable X with

distribution function Hn , n � 2 has the stochastic representation

X
d= Y

n∏
i=1

Bci
i , ci ∈ (0,∞), i = 1, . . . ,n, (3.8)

then Theorem 3.3 implies that H can be retrieved recursively from Hn , provided that Hn(0) = 0.
(b) An interesting (open) question arises in connection with random products. Specifically, if N is a counting random

variable taking positive integer values independent of Y , Bi , i � 1, such that

X
d= Y

N∏
i=1

Bci
i where X ∼ H N , (3.9)

then under what conditions on N can we (recursively) compute the distribution function H if H N is known?
Also arises a similar question if X, Y are related by

X
d= Y

[
B1 B3 + B2(1 − B3)

]
. (3.10)

4. Tail asymptotics

The tail asymptotics of products have been studied in papers such as Berman [3,4], Cline and Samorodnitsky [9], Tang
and Tsitsiashvili [38,39], Jessen and Mikosch [20], Tang [36,37], Liu and Tang [24] and the references therein. Our asymptotic
considerations below can be motivated by considering sample maxima.

Specifically, let Xi, Yi , i = 1, . . . ,n, be independent copies of X = Y Bα,β and Y , respectively, and let

M X,k := max
1� j�k

X j, MY ,k := max
1� j�k

Y j, k � 1,

be the corresponding sample maxima. From extreme value theory (see e.g., de Haan and Ferreira [10], Falk et al. [12, p. 23],
Resnick [35, p. 38]) if there are constants an > 0, bn such that

lim
n→∞ sup

t∈R

∣∣Hn(ant + bn) − Q (t)
∣∣ = 0, (4.1)

then we have the convergence in distribution

(MY ,n − bn)/an
d→ MY ∼ Q , n → ∞, (4.2)

where Q is a univariate extreme value distribution (Gumbel, Fréchet or Weibull). If (4.1) holds (write H ∈ MDA(Q )) it is
of some interest to investigate the asymptotic behaviour of M X,k , k � 1, where Xi , i � n are the results of a beta random
scaling, i.e.,
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Xi
d= Yi Bi, Bi

d= Bα,β, i = 0, . . . ,n, n � 1, (4.3)

with Yi ∼ H and the Bi ’s and Yi ’s are mutually independent. Thus Xi ∼ Hα,β for any i � n. A key question is whether Hα,β

is in a maximal domain of attraction if H is, and conversely? We answer this below, as well as exposing the explicit tail
asymptotic relations underlying (4.3).

4.1. Gumbel max-domain of attraction

If (4.1) holds with Q = Λ the unit Gumbel distribution (Λ(x) := exp(−exp(−x)), x ∈ R), then there exists a positive
measurable scaling function w (see e.g., de Haan and Ferreira [10], Resnick [35, p. 46]) such that

lim
x↑rH

H(x + t/w(x))

H(x)
= exp(−t), ∀t ∈ R, (4.4)

is valid. We write H ∈ MDA(Λ, w) if (4.4) holds. The scaling function w satisfies

lim
x↑rH

xw(x) = ∞, and lim
x↑rH

w(x)(rH − x) = ∞, if rH < ∞, (4.5)

and also the self-neglecting property

lim
x↑rH

w(x + t/w(x))

w(x)
= 1, (4.6)

which holds locally uniformly for t ∈ R; see e.g., Resnick [35, p. 41]. Note that most authors work with the so-called
auxiliary function 1/w(x), but our convention follows Berman [4] because results we prove are closely linked to some in
his Chapter 12.

Canonical examples of distribution functions in the Gumbel max-domain of attraction are the univariate Gaussian and
the gamma distributions, which are special cases of distribution functions whose scaling functions have the form (for x
large)

w(x) = rθxθ−1

1 + L1(x)
, (4.7)

where L1 is regularly varying at infinity with index θμ, μ ∈ (−∞,0) and r, θ are positive constants. Note that θ = 2 for the
Gaussian case, and we have for the gamma(α,β) case that θ = 1, w(x) = β , x > 0 and

lim
x→∞

H(x + t)

H(x)
= exp(−βt), ∀t ∈ R. (4.8)

Distribution functions H that satisfy (4.8) comprise what in other contexts is called the exponential tail class L(β). See
Pakes [29] for references, and Pakes and Steutel [32] where they are called medium-tailed.

We state now the first result of this section, a close relative of Theorem 12.3.1 in Berman [4]; see Example 1 below for
the latter. In Section 7 we will state and prove the general proposition Theorem 7.4 which subsumes both direct assertions.

Theorem 4.1. Let H, Hα,β be as in Theorem 3.3. Then H ∈ MDA(Λ, w) iff Hα,β ∈ MDA(Λ, w). If one of these holds, then

Hα,β(x) = (
1 + o(1)

)
K

(
xw(x)

)−β
H(x), x ↑ rH , (4.9)

where K := Γ (α + β)/Γ (α), and the density function hα,β of Hα,β satisfies

lim
x↑rH

hα,β(x)

w(x)Hα,β(x)
= 1. (4.10)

The asymptotic equivalence (4.9) is the principal assertion here, as can be seen by noting that if one of the distribution
functions F and H is in MDA(Λ, w) and they are related by

F (x) = (
1 + o(1)

)
xc(w(x)

)μ
H(x), x ↑ rH , (4.11)

where c,μ are real, then it follows from (4.4) and (4.6) that the other distribution function is in MDA(Λ, w).
It is well known that if H is a univariate distribution function with upper endpoint rH = ∞ and H ∈ MDA(Λ, w), then

H is rapidly varying (see Resnick [35]), i.e.,

lim
x→∞

H(cx)

H(x)
= 0, ∀c > 1. (4.12)

A necessary ingredient in the proof of Theorem 4.1 is the following rate of convergence refinement to (4.12); recall the first
member of (4.5).
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Lemma 4.2. Let H be a univariate distribution function with rH = ∞. If H ∈ MDA(Λ, w), then we have for any constant μ ∈ (0,∞)

lim
x→∞

(
xw(x)

)μ H(cx)

H(x)
= 0, ∀c > 1. (4.13)

Remark 4.3.

(a) The self-neglecting property (4.6) and (4.10) imply that the density function hα,β of Hα,β satisfies

hα,β(x + t/w(x))

hα,β(x)
→ exp(−t), x ↑ rH

locally uniformly for t ∈ R, provided that either H ∈ MDA(Λ, w), or Hα,β ∈ MDA(Λ, w).
(b) By Theorem 4.1, if Hα,β ∈ MDA(Λ, w), then we can reverse (4.9) obtaining

H(x) = (
1 + o(1)

) Γ (α)

Γ (α + β)

(
xw(x)

)β
Hα,β(x), x ↑ rH . (4.14)

See Berman [4] for similar results. Further note that (4.13) and (4.14) imply for any c ∈ (1,∞) that

H(x) = o
(

Hα,β(cx)
)
, Hα,β(x) = o

(
H(cx)

)
, and

(
xw(x)

)β
Hα,β(x) = o(1), x ↑ rH .

We give next two illustrations of Theorem 7.4.

Example 1.

(a) Theorem 12.3.1 in Berman [4] follows from Theorem 7.4(a) by taking (see (7.10))

φ(u) = P {√1 − Bα,β > u}
and checking that, since 1 − Bα,β

d= Bβ,α , (7.10) holds with C = 2α/αB(α,β) and the exponent β replaced with α.
(b) Let H, F be two distribution functions as in Theorem 4.1 and suppose that lH = 0 and rH = ∞. We assume that the

random multiplier B has the stochastic representation

B
d= λU1 + (1 − λ)U2, λ ∈ (0,1),

where U1, U2 are two independent positive random variables such that for i = 1,2

P {Ui > 1 − s} = (
1 + o(1)

)
ci s

di , ci,di ∈ (0,∞), s ↓ 0. (4.15)

Note in passing that (4.15) is stronger than assuming that Ui has upper endpoint 1 and is in the Weibull max-domain of
attraction. The latter assumption reinforced with a second order condition introduced in de Haan and Stadtmüller [11]
however implies (4.15) (see Li and Peng [23]).

It follows that as s ↓ 0

P {B > 1 − s} = (
1 + o(1)

) c1c2

λd1(1 − λ)d2

Γ (d1 + 1)Γ (d2 + 1)

Γ (d1 + d2 + 1)
sd1+d2 .

Further, assume for all large x that

H(x) = (
1 + o(1)

)
MxN exp

(−rxθ
)
, M > 0, r > 0, θ > 0, N ∈ R. (4.16)

Clearly, H ∈ MDA(Λ, w) with

w(x) = rθxθ−1, x > 0. (4.17)

In view of Theorem 7.4 the distribution function F of Y B satisfies F ∈ MDA(Λ, w) and, as x → ∞,

F (x) = (
1 + o(1)

)
C∗xN−θ(d1+d2) exp

(−rxθ
)
,

with

C∗ := M(rθ)−d1−d2
c1c2

λd1(1 − λ)d2
Γ (d1 + 1)Γ (d2 + 1).
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4.2. Regularly varying tails

We deal next with distribution functions Hα,β in either the Fréchet or the Weibull max-domains of attraction. As we
will discuss below, the asymptotics of Hα,β when H is attracted to the Fréchet distribution is quite well known, and results
for the Weibull max-domain of attraction are less complete. In Section 7 we offer simpler proofs of these results, and their
converses, i.e., when Hα,β belongs to one of these max-domains of attractions, then so does H .

The unit Fréchet distribution function with positive index γ is Φγ (x) := exp(−x−γ ), x > 0. It is well known that a
distribution function H with infinite upper endpoint rH = ∞ is in the Fréchet max-domain of attraction (see e.g., Falk et
al. [12], Resnick [35]) iff H is regularly varying at infinity with index −γ < 0, i.e.,

lim
x→∞

H(xt)

H(x)
= t−γ , ∀t ∈ (0,∞). (4.18)

If lH = 0 and 0 < γ < 1, then this condition is the criterion that H is attracted to a positive stable law with index γ .
Breiman [7, Proposition 3] shows that if this holds, then the distribution function F of X = Y B , where the random multiplier
B is independent of Y , is also attracted to the same positive stable law provided that E{|B|} < ∞. (Thus B is not restricted
in sign or magnitude.) Specifically, H and F are tail equivalent, i.e.,

F (x) = (
1 + o(1)

)
E
{

Bγ
}

H(x), x → ∞. (4.19)

Jessen and Mikosch [20, p. 184] observe that Breiman’s proof is valid for any positive γ if B � 0 and E{Bγ +ε} < ∞ for
some ε > 0. Berman [4, Theorem 12.3.2] proves this tail equivalence for the case B = √

1 − Bα,β . Breiman’s methodology
is completely analytical, and in Section 7 we shall give a much simpler proof for the case of a general bounded multiplier
0 � B � 1. We indicate too how this can be extended to the general result.

So in particular, we conclude from (4.19) that if α,β > 0 and Hα,β, is defined via (2.4) with Hα,β(0) = 0, then

Hα,β(x) = (
1 + o(1)

)
E
{

Bγ
α,β

}
H(x), x → ∞, (4.20)

and

E
{

Bγ
α,β

} = Γ (α + β)Γ (α + γ )

Γ (α)Γ (α + β + γ )
.

The next theorem asserts that this tail equivalence holds also if γ = 0, and conversely, if γ > 0 and Hα,β ∈ MDA(Φγ ),
then so is H .

Theorem 4.4. Let H, Hα,β , α,β > 0 be two distribution functions defined via (2.4) with H(0) = 0. Then H satisfies (4.18) with some
γ � 0, iff Hα,β satisfies (4.18) with the same index γ . Furthermore, for any γ > 0 we have

lim
x→∞

xhα,β(x)

Hα,β(x)
= γ . (4.21)

Example 2. Theorem 4.4 shows in particular that Pareto tails are preserved under independent beta random scaling.

The unit Weibull distribution function with index γ > 0 is Ψγ (x) := exp(−|x|γ ), x < 0. It is well known that if H has a
finite upper endpoint (say rH = 1), then H ∈ MDA(Ψγ ) iff

lim
x↓0

H(1 − tx)

H(1 − x)
= tγ , ∀t > 0. (4.22)

Theorem 12.3.3 in Berman [4] is closely related to the following result, and in Section 7 we prove a general theorem
which subsumes both direct assertions.

Theorem 4.5. Let H, Hα,β ,α,β be as in Theorem 4.4. If rH = 1, H(0) = 0 and (4.22) holds for some γ � 0, then Hα,β∈ MDA(Ψβ+γ )

and

Hα,β(1 − x) = (
1 + o(1)

)
K xβ H(1 − x), x ↓ 0, (4.23)

with K := Γ (α + β)Γ (γ + 1)/(Γ (α)Γ (γ + β + 1)).
Furthermore we have

lim
x↓0

xhα,β(1 − x)

Hα,β(1 − x)
= β + γ > 0. (4.24)

Conversely, if Hα,β ∈ MDA(Ψβ+γ ), γ � 0, then (4.22) is satisfied.
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Remark 4.6.

(a) If (2.4) holds with Bα,β ∼ gamma(α,β), then in Lemma 17 of Hashorva et al. [18] it is shown that H satisfies (4.18)
with some γ � 0, iff Hα,β satisfies (4.18) with the same index γ (see also Jessen and Mikosch [20]).

(b) Under the Gumbel or the Weibull max-domain of attraction assumption on H or Hα,β by (4.5) we have

lim
x↑rH

Hα,β(x)

H(x)
= 0,

whereas when H or Hα,β are in the Fréchet max-domain of attraction the above limit is a positive constant.

5. Conditional limiting results

Let the bivariate random vector (O 1, O 2) be uniformly distributed on the unit circle, R ∼ H be independent of (O 1, O 2),

and let (S1, S2)
d= R(O 1, O 2) be the corresponding bivariate (planar) spherical random vector. Finally, define the bivariate

elliptical random vector

(U , V ) = (
S1,ρS1 +

√
1 − ρ2 S2

)
, ρ ∈ (−1,1). (5.1)

Distributional properties of spherical and elliptical random vectors are studied by many authors, e.g., Cambanis et al. [8],
Fang et al. [13], Kotz et al. [21] and their references. Referring to Cambanis et al. [8] we have

O 2
1

d= O 2
2 ∼ beta(1/2,1/2). (5.2)

Basic asymptotic properties of spherical and elliptical random vectors can be derived utilising (5.1) and (5.2). One line of
enquiry is to determine the asymptotic behaviour of the conditional distribution of V − ρU given an event constraining
the values of U . For example, in several statistical applications (see Abdous et al. [1]) the approximation of the conditional
random variable

Z∗
x

d= (V − ρx)|U > x, x ∈ R,

is of some interest. Since V − ρU = √
1 − ρ2 S2, the outcome follows directly from Theorem 12.3.3 in Berman [4], i.e., if

H ∈ MDA(Λ, w), then

c(x)Z∗
x

d→
√

1 − ρ2 Z , x ↑ rH , (5.3)

where c(x) := √
w(x)/x, x > 0, and Z is a standard Gaussian random variable. Abdous et al. [1] is an independent account.

Theorem 5.1 below embellishes this outcome.
The point-wise conditioned random variable

Zx
d= (V − ρx)|U = x, x ∈ R,

is a particular case of the conditional multivariate models introduced by Heffernan and Tawn [19] for treating certain
inference problems. They raise the general problem of conditional limit laws when one component of a random vector
tends to infinity, and they give results for some particular parametric families. It is known (Hashorva [16, Corollary 3.1])
that Zx has the same Gaussian limit law as Z∗

x , i.e.,

c(x)Zx
d→

√
1 − ρ2 Z , x ↑ rH . (5.4)

We will prove that if H is absolutely continuous, then (5.4) holds in the stronger sense that the density functions converge.
We prove in addition that both limit assertions hold assuming that the (marginal) distribution of |U | is attracted to the
Gumbel distribution. Finally, Hashorva and Kotz [17] give an account of these results based on the strong Kotz approxima-
tion.

Theorem 5.1. Let H, (U , V ), ρ ∈ (−1,1), c(x), Zx, Z∗
x , x > 0 be as above with |U | ∼ G and G(0) = 0. If G ∈ MDA(Λ, w) or H ∈

MDA(Λ, w), then (a), (5.3) is satisfied; and (b), (5.4) can be strengthened to convergence of the density functions if, in addition, H is
absolutely continuous.

The proof of this theorem rests on a closure lemma for distributions attracted to the Gumbel distribution.

Lemma 5.2. Let 0 � X ∼ F , p > 0 be a constant, and denote the distribution function of X p by F p . Then F ∈ MDA(Λ, w) iff F p ∈
MDA(Λ, w p) where

w p(x) = qxq−1 w
(
xq), x > 0, q := 1/p. (5.5)
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6. Estimation of conditional survivor and quantile function

For i = 1,2, . . . , let (Ui, V i) be independent copies of (U , V ) as defined in the previous section, and suppose too that
R ∼ H ∈ MDA(Λ, w) with rH = ∞. We are interested in the conditional survivor function

Ψ x(y) := P {V > y | U > x}, x, y ∈ R.

Estimation of Ψ x when x is large is discussed in detail by Abdous et al. [2]. As noted therein, if x is large there may
be insufficient data available for the effective estimation of Ψ x(y). Similar difficulties apply for estimation of the inverse
function (or conditional quantile function), Θx(s) (s ∈ (0,1) and x ∈ R) of 1 −Ψ x(·). The Gaussian approximation implied by
Theorem 5.1 entails

sup
y∈R

∣∣Ψ x
(

y
√

x/w(x) + ρx
) − Φ

(
y/

√
1 − ρ2

)∣∣ → 0, x → ∞, (6.1)

where Φ is the standard Gaussian distribution function.
On this basis, Abdous et al. [2] propose two estimators of Ψ x . Theorem 5.1 implies that the Gaussian approximation

in (6.1) is valid if we assume instead that U ∼ G ∈ MDA(Λ, w). For estimation purposes this fact is crucial because we can
estimate w based only on the random sample U1, . . . , Un, or V 1, . . . , Vn .

A non-parametric estimator ρ̂n of ρ is given by (see e.g., Li and Peng [22])

ρ̂n := sin(πτ̂n/2), n > 1, (6.2)

where τ̂n is the empirical estimator of Kendall’s tau. Now, if ŵn(x) is an estimator of the scaling function w(x) (for all
large x), then by the above approximation we can estimate Ψ x(y) by

Ψ n,x(y) := Φ
(
ĥn(y − ρ̂nx)/

(
1 − ρ̂2

n

)1/2)
, n > 1, (6.3)

where ĥn(x) := (ŵn(x)/x)1/2, x > 0. An estimator for the quantile function Θx is then given by

Θn(x, s) = ρnx +
√

1 − ρ̂2
n Φ−1(s)/ĥn(x), x > 0, s ∈ (0,1), (6.4)

with Φ−1 the inverse of Φ . Both of these estimators are consequences of the Gaussian approximation. However, our concern
here is with estimation of w . Specifically, we assume that the scaling function w satisfies (4.7) with positive constants r, θ

and L1 regularly varying with index θμ, μ ∈ (−∞,0). It follows that (see Abdous et al. [2])

G(x) = exp
(−rxθ

(
1 + L2(x)

))
(6.5)

holds for all large x, where L2 is another regularly varying function with index −θμ. This places G in the class of Weibull-
tail distributions, and θ−1 is the so-called Weibull tail-coefficient (see Gardes and Girard [15]). Canonical examples of
Weibull-tail distributions are the Gaussian, gamma, and extended Weibull distributions. Next, define for i = 1, . . . ,n,

R(1)
i := Ui, R(2)

in :=
√

U 2
i + (V i − ρ̂nUi)

2/
(
1 − ρ̂2

n
)

and write R(k)
1:n � · · · � R(k)

n:n (k = 1,2) for the associated order statistics. Based on R(1)
i for i � n, or on R(2)

in for i � n, we may
construct the Gardes and Girard [15] estimator of θ ,

θ̂
( j)
n := 1

Tn

1

kn

n∑
i=1

(
log R( j)

n−i+1:n − log R( j)
n−kn+1:n

)
, j = 1,2,

where 1 � kn � n, Tn > 0, n � 1 are constants satisfying

lim
n→∞kn = ∞, lim

n→∞
kn

n
= 0, lim

n→∞ log(Tn/kn) = 1, lim
n→∞

√
knb

(
log(n/kn)

) → λ ∈ R,

and the function b (related to L1) is regularly varying with index η. The scaling coefficient r can be estimated by (see
Abdous et al. [2])

r̂( j)
n = 1

kn

kn∑
i=1

log(n/i)

(R( j)
n−i+1:n)θ̂

( j)
n

, j = 1,2, n > 1, (6.6)

leading to the following estimators of w ,

ŵ( j)
n (x) = r̂( j)

n θ̂
( j)
n xθ̂

( j)
n −1, x > 0, j = 1,2, n > 1. (6.7)
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Our suggestion is to estimate w by ŵ(1)
n , because it is based on independent and identically distributed Ri , i � n. This

differs from the estimator ŵ(2)
n recommended by Abdous et al. [2] which is based on the dependent random variables

R(2)
1n , . . . , R(2)

nn (recall ρ̂n is estimated from (Ui, V i), i � 1).

A third estimator of w can easily be constructed by considering the sample V 1, . . . , Vn since, by assumption, U
d= V .

Note in passing that if θ = 1, then we have the estimator of r (of interest for G in L(r), r > 0)

r̂(1)
n = 1

kn

kn∑
i=1

log(n/i)

R(1)
n−i+1:n

, n > 1. (6.8)

7. Further results and proofs

We present first some asymptotic results for the Weyl fractional-order integral operator, followed by the proofs of all the
results in the previous sections.

Theorem 7.1. Let H be a univariate distribution function with H(0) = 0, rH ∈ (0,∞], and H ∈ MDA(Λ, w). If α is real and β > 0,
then

(Jβ,p−α H)(x) = (
1 + o(1)

)(
w(x)

)1−β
x−α H(x), x ↑ rH , (7.1)

and

(Iβ p−α H)(x) = (1 + o(1))

w(x)
(Jβ,p−α H)(x), x ↑ rH . (7.2)

Proof. Let W x be a random variable whose survivor function is

P {W x > z} = H(x + z/w(x))

H(x)
, 0 � z < t(x),

where t(x) := ∞ if rH = ∞ and otherwise

t(x) := (rH − x)w(x) if rH < ∞.

Then (4.4) is equivalent to the convergence assertion W x
d→ W which has the standard exponential distribution. Observe

now that for x such that H(x) ∈ (0,1) and v(x) := xw(x) we may write

(w(x))β−1xα

H(x)
(Jβ,p−α H)(x) = 1

Γ (β)
E
{

W β−1
x

(
1 + W x/v(x)

)−α}
.

The assertion (7.1) follows because (4.5) and the following argument implies that if β � 1, then the expectation on the
right-hand side converges to E{W β−1} = Γ (β). This is obviously true if 0 < β � 1.

Let {M(s), s � 0} denote the extremal process with P {M(s) � y} = (H(y))s , y ∈ R. It follows from (4.4) that

lim
x→∞ P

{
M(x) � b(x) + za(x)

} = Λ(z), ∀z ∈ R,

where we choose b(x) to satisfy xH(b(x)) = 1 and then a(x) = 1/w(b(x)); see Resnick [35, p. 40]. For any m > 0 and x large
we have

E
{

W m
b(x)

} = mx

t(b(x))∫
0

zm−1 H
(
b(x) + za(x)

)
dz

� m

t(b(x))∫
0

zm−1 P {M(x) > b(x) + za(x)}
[P {M(x) � b(x) + za(x)}]1−1/x

dz.

The inequality follows from 1 − (1 − H)x � xH Hx−1. The denominator in the integral is bounded below by[
P

{
M(x) � b(x)

}]1−1/x → e−1, x → ∞.
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So we can choose a positive number x′ such that ∀x > x′ ,

E
{

W m
b(x)

}
� 2em

t(b(x))∫
0

zm−1 P
{

M(x) > b(x) + za(x)
}

dz = 2eE

([
max

(
M(x) − b(x)

a(x)
,0

)]m)
.

Denoting the last expectation by E(x,m), it follows from the moment convergence theorem of Pickands [33] that
supx�x′ E(x,m) < ∞. Since b(x) ↑ rH , we conclude that there is a positive number s′ such that sups�s′ E{W m

s } < ∞, and
since m is arbitrary, it follows that for each c > 0 the family of random variables {W c

s , s � s′} is uniformly integrable, and
hence limx↑rH E{W c

x} = E{W c}.
The same manoeuvres yield

xα(w(x))β

H(x)
(Iβ p−α H)(x) = 1

Γ (β)

t(x)∫
0

zβ−1(1 + z/v(x)
)−α

P {W x > z}dz → 1,

so using the dominated convergence theorem in conjunction with just proven bounds implies that (7.2) holds. �
Theorem 7.1 subsumes and generalizes results in Berman [4, §12.2] applying to the case rH = ∞. To align with Berman’s

notation, we use β − 1 to denote his parameter p, and in what follows we assume that E{Y β} < ∞.
(i) Propositions 12.2.3 and 4 in Berman [4] concern distribution functions F having the form

F (x) = (
1 + o(1)

)
c

∞∫
x

(y − x)β−1 H(y)dy, c ∈ (0,∞).

It is easily seen that

F (x) = (
1 + o(1)

)
cΓ (β)(Jβ+1,p0 H)(x) = (

1 + o(1)
)
cΓ (β)

(
w(x)

)−β
H(x),

and this is valid if β > 0, which extends the range of parameter in Berman’s Proposition 12.2.4.
(ii) Proposition 12.2.5 in Berman [4] concerns survivor functions proportional to the order-q stationary excess distribution

generated by H , i.e.,

F (x) = (
1 + o(1)

)
c

∞∫
x

yq−1 H(y)dy,

where q is real. The integral can be recast as

q−1

∞∫
x

(
yq − xq)dH(y) = q−1xq H(x)E

{(
1 + W x/v(x)

)q − 1
}
,

from which it follows that, as x → ∞,

F (x) = (
1 + o(1)

)
cxq−1 H(x)

w(x)
.

(iii) The order-q size-biased distribution generated by H induces survivor functions of the form

F (x) = (
1 + o(1)

)
c

∞∫
x

yq dH(y) = (
1 + o(1)

)
c(J1,pq H)(x) = (

1 + o(1)
)
cxq H(x).

It follows from (4.11) that each above F ∈ MDA(Λ, w).
Note that if q > 0, then the results under (ii) and (iii) are related via Theorem 4.1 because if Ŷq and Ỹq denote the

order-q size-biased and stationary excess versions of Y , then Ỹq
d= Ŷq Bq,1. See Pakes [28, §4] for this connection and further

generalization involving beta random scaling.

Theorem 7.2. Let H be a univariate distribution function with rH = ∞. Assume that H(0) = 0 and (4.18) holds with γ � 0. If β > 0
and c are two constants such that β + c < γ + 1, then

(Jβ,pc H)(x) = (
1 + o(1)

)γ Γ (γ + 1 − β − c)
xβ+c−1 H(x), x → ∞. (7.3)
Γ (γ + 1 − c)
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Furthermore if γ > β + c, then

(Iβ pc H)(x) = (
1 + o(1)

)Γ (γ − β − c)

Γ (γ − c)
xβ+c H(x), x → ∞. (7.4)

Proof. Let W x have the distribution function max(1 − H(xt)/H(x),0). Then (4.18) is equivalent to: If γ > 0, then W x
d→ W

which has the Pareto survivor function t−γ for t � 1; and if γ = 0, then W x
p→ ∞. Substituting y = tx into the integral

defining Jβ,pc H gives the representation

(Jβ,pc H)(x) = xβ+c−1 H(x)

Γ (β)
E
{
(W x − 1)β−1W c

x

}
.

Arguing as in the proof of Theorem 7.1 yields the bound E{W m
b(v)

} = O (E{(M(v)/b(v))m}), and we conclude from
Pickands [33] that if γ > 0, then

lim
x→∞ E

{
(W x − 1)β−1W c

x

} = E
{
(W − 1)β−1W c} = γ B(γ + 1 − β − c, β),

and (7.3) follows. This assertion follows too if γ = 0 because (W x − 1)β−1W c
x < W β+c−1

x , and the exponent is negative.
The same substitution yields

(Iβ,pc H)(x) = xβ+c H(x)

Γ (β)

∞∫
1

(t − 1)β−1tc P {W x > t}dt,

and it is clear that the integral converges to

∞∫
1

(t − 1)β−1tc−γ dt = B(γ − β − c, β),

whence (7.4). �
Theorem 7.3. Let H be a univariate distribution function with upper endpoint rH = 1. Assume that H(0) = 0, and that (4.22) holds
with γ � 0. If β > 0 and c ∈ R are constants and γ > 0, then

(Jβ,pc H)(1 − x) = (
1 + o(1)

) Γ (γ + 1)

Γ (β + γ )
xβ−1 H(1 − x), x ↓ 0 (7.5)

and if γ � 0, then

(Iβ pc H)(1 − x) = 1 + o(1)

β + γ
x(Jβ,pc H)(1 − x), x ↓ 0. (7.6)

Proof. Let W x � 1 be a random variable having the distribution function H(1 − tx)/H(1 − x). If γ > 0, then (4.22) is

equivalent to W x
d→ W

d= B1/γ
1,1 , and if γ = 0, then W x

d→ 1. The substitution y = 1 − xt yields

(Jβ,pc H)(1 − x) = xβ−1 H(1 − x)

Γ (β)
E
{
(1 − W x)

β−1(1 − xW x)
c}.

If γ > 0, then the expectation converges as x ↓ 0 to

E
{
(1 − W )β−1} = γ B(γ ,β),

and if γ = 0, then it converges to 1. So (7.5) follows in both cases.
The same substitution yields

(Iβ pc H)(1 − x) = xβ H(1 − x)

Γ (β)

1∫
(1 − t)β−1(1 − xt)c P {W x � t}dt,
0
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and the integral converges to B(γ + 1, β). Thus

(Iβ pc H)(1 − x) = (
1 + o(1)

)
xβ H(1 − x)

Γ (γ + 1)

Γ (β + γ + 1)
,

and (7.6) follows. �
Proof of Theorem 3.1. The identity (A.7) implies that

1 = Γ (α + β)

Γ (α)
xα(Iβ p−α−β)(x), ∀x ∈ (0, rH ).

Hence by (2.5)

Hα,β(x) = Γ (α + β)

Γ (α)
xα(Iβ p−α−β)(x) − Γ (α + β)

Γ (α)
xα(Iβ p−α−β H)(x)

= Γ (α + β)

Γ (α)
xα

[
(Iβ p−α−β)(x) − (Iβ p−α−β H)(x)

]
= Γ (α + β)

Γ (α)
xα(Iβ p−α−β H)(x), ∀x ∈ (0, rH ),

thus the first result follows by using (A.7) and utilising further (A.4) which holds if H replaces H .
We show next the second claim. Since H(0) = 0, it follows from Lemma 2.1 in Pakes and Navarro [31] that

Hα,λ(0) = Hα,β(0) = 0.

Furthermore, both Hα,λ and Hα,β are absolutely continuous and

X
d= Y ∗Bα+λ,β−λ, with Y ∗ ∼ Hα,λ, X ∼ Hα,β .

Therefore, in order to show the proof we need to check the assumptions of Theorem A.2 which is stated below. In our
case n = 1, hence the condition H(n−1)

α,β = H(0)
α,β = Hα,β is absolutely continuous is satisfied. Since H(1)

α,β is a density function

and δ ∈ [0,1), then clearly H(1)
α,β ∈ Iδ−α−λ . Further we have H(0)

α,β = Hα,β ∈ Iδ−α−λ−1 since Hα,β is bounded by 1. Applying
Theorem A.2 for any x ∈ (0, rH ) we may write

Hα,λ(x) = − Γ (α + λ)

Γ (α + β)
xα+β

(
Iδ D(p−α−λHα,β)

)
(x)

= Γ (α + λ)

Γ (α + β)
xα+β

[
(α + λ)(Iδ p−α−λ−1 Hα,β)(x) + (Jδ,p−α−λ Hα,β)(x)

]
and the result follows. �
Proof of Corollary 3.2. Letting λ → 0 in (3.2) we obtain (recall I0h := h)

Hα,β(x) = Γ (α + β)

Γ (α)
xα(Iβ p−α−β H)(x), ∀x ∈ (0, rH ). (7.7)

Consequently, we have

−hα,β(x) = Γ (α + β)

Γ (α)

(
D(pα Iβ p−α−β H)

)
(x), ∀x ∈ (0, rH ),

and in view of (2.5),

hα,β(x) = Γ (α + β)

Γ (α)

(
D(pα Iβ p−α−β H)

)
(x), ∀x ∈ (0, rH ).

Since hα,β is given by (see (22) in Hashorva et al. [18])

hα,β(x) = Γ (α + β)

Γ (α)
xα−1(Jβ,p−α−β+1 H)(x), ∀x ∈ (0, rH ), (7.8)

the result follows. �
Proof of Theorem 3.3. Let Bα+βi ,λi ∼ beta(α + βi, λi), i = 0, . . . ,k be independent beta random variables independent of X
and Y . By the assumptions we may write
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X
d= Y Bα,β0

d= Bα,β1 Y Bα+β1,β0−β1

d= Y1 Bα,β1 , with Y1
d= Y0 Bα+β1,β0−β1

d= Y0 Bα+β1,λ1 , Y0 := Y .

Similarly

X
d= Y2 Bα,β2 , with Y2

d= Y1 Bα+β2,λ2

and repeating we arrive at

X
d= Yk Bα,βk , with Yk

d= Yk−1 Bα+βk,λk .

Setting Yk+1 := X we may write the above stochastic representation as

Yk+1
d= Yk Bα+βk+1,λk+1 .

Let H0 := H and Hk+1 := Hα,β . Applying (3.3) we obtain for any i = 1, . . . ,k + 1,

Hi−1(x) = Γ (α + βi)

Γ (α + βi + λi)
xα+βi−1

[
(α + βi)(Iδi p−α−βi−1 Hi)(x) + (Jδi ,p−α−βi

Hi)(x)
]
, (7.9)

and the assertion follows. �
We precede our account of scaling relations for the Gumbel distribution with the following proof.

Proof of Lemma 4.2. We can assume without loss of generality that H(0) = 0 since for any random variable Z with dis-
tribution function H also max(Z ,0) has distribution function in the Gumbel max-domain of attraction, and vice-versa. If
β > 0 then a direct calculation followed by Theorem 7.1 yields

H1,β(x) = Γ (1 + β)(Jβ+1,p−β H)(x) = (
1 + o(1)

)
Γ (1 + β)

H(x)

(xw(x))β
, x ↑ rH .

On the other hand, if B := B1,β and c > 1, then

H1,β(x) >

∞∫
cx

P {B > x/y}dH(y) > P
{

B > c−1}H(cx).

Combining these estimates yields

lim sup
x→∞

(
xw(x)

)β H(cx)

H(x)
< ∞.

The assertion (4.13) follows by choosing β > μ and appealing to (4.5) in the case rH = ∞. �
The next result is the foreshadowed generalization of the direct assertion of Theorem 4.1. It comprises two parts which

respectively yields a tail estimate of the distribution function of a random scaling, and its density function.

Theorem 7.4. Suppose H ∈ MDA(Λ, w).

(a) If φ(u) � 0 is defined and bounded on [0,1] and it satisfies

φ(u) = (
1 + o(1)

)
C(1 − u)β, u ↑ 1, (7.10)

where β, C � 0 are constants, then

I(x) :=
∞∫

x

φ(x/y)dH(y) = (
1 + o(1)

)
CΓ (1 + β)

H(x)

(xw(x))β
, x ↑ rH .
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(b) If g(u) � 0 is defined in [0,1] such that ug(u) is defined and bounded on [0, u′] for any u′ < 1, and

g(u) = (
1 + o(1)

)
c(1 − u)β−1, u ↑ 1, (7.11)

where β > 0, c � 0 are constants, then

J (x) :=
∞∫

x

y−1 g(x/y)dH(y) = (
1 + o(1)

)
cΓ (β)

H(x)

xβ(w(x))β−1
, x ↑ rH .

Proof of Theorem 7.4. We prove only (b) since the details for (a) are similar and simpler. If u′ ∈ (0,1), then x/y � u′ if
y � x/u′ and

J1(x) :=
∞∫

x/u′
y−1 g(x/y)dH(y) = O

[
x−1 H

(
x/u′)].

If rH is finite, then J1(x) = 0 if x > u′rH . If rH = ∞, then, recalling that v(x) = xw(x), Lemma 4.2 ensures that J1(x) =
o(x−1 H(x)(v(x))−μ), x → ∞ for all positive μ.

If c is positive and 0 < ε  c, then it follows from (7.11) that g(u)/(1 − u)β−1 ∈ (c − ε, c + ε) if u′ < u < 1 and u′ is
sufficiently close to unity. Hence J (x) − J1(x) is asymptotically equal to

J2(x) := c

x/u′∫
x

y−1(1 − x/y)β−1 dH(y).

Proceeding as in the proof of Theorem 7.1 we obtain the representation

J2(x) = cH(x)

x(v(x))β−1
E
{

W β−1
x

(1 + W x/v(x))β
; W x � v(x)

(
1 − u′)/u′

}
.

The expectation converges to E{W β−1} = Γ (β). Taking μ > β above, we see that J1(x) = o( J2(x)), and the assertion fol-
lows. �
Proof of Theorem 4.1. Assume that H ∈ MDA(Λ, w). The direct assertion (4.9) follows from Theorem 7.4(a) by setting
φ(u) := P {Bα,β > u} and checking that (7.10) holds with C = [βB(α,β)]−1. Next, taking g(u) as the density function of
Bα,β it is obvious that the conditions of Theorem 7.4(b) are satisfied with c = 1/B(α,β). Thus (4.10) follows from (4.9)
and (7.11).

To prove the converse, assume that Hα,β ∈ MDA(Λ, w) for some positive scaling function w . With the notation of Theo-
rem 3.3 we may write for i = 1, . . . ,k + 1

Hi−1(x) = Γ (α + βi)

Γ (α + βi−1)
xα+βi−1

[
(α + βi)(Iδi p−α−βi−1 Hi)(x) + (Jδi ,p−α−βi

Hi)(x)
]
, ∀x ∈ (0, rH ), (7.12)

where H0 := H , Hk+1 := Hα,β . In view of Theorem 7.1 and (4.5), we obtain for i = k + 1 that

Hi−1(x) = (
1 + o(1)

) Γ (α + βi)

Γ (α + βi−1)
xα+βi−1(Jδi ,p−α−βi

Hi)(x)

= (
1 + o(1)

) Γ (α + βi)

Γ (α + βi−1)
xβi−1−βi

(
w(x)

)−(δi−1)
Hi(x), x ↑ rH .

By (4.5) and (4.6) it follows that Hk ∈ MDA(Λ, w). Since the above holds for all i = 1, . . . ,k, it follows that H0 = H ∈
MDA(Λ, w) too. Next, (7.7) and (7.8) imply for any x > 0 that

hα,β(x)

Hα,β(x)
= (Jβ,p−α−β H)(x)

x(Iβ p−α−β−1 H)(x)
, (7.13)

so applying Theorem 7.1 establishes (4.10), and the result follows. �
As foreshadowed above, the following argument includes a simple proof of (4.19) for an arbitrary bounded random

scaling. We then show how this proof can be extended to remove the boundedness restriction.
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Proof of Theorem 4.4. With W x as in the proof of Theorem 7.2, clearly

P {X B > x} = H(x)E
{

P
{

B > W −1
x

}}
.

But

P
{

B > W −1
x

} → P
{

B > W −1} =
1∫

0

P
{

W > u−1}dP {B � u} = E
{

Bγ
}
,

and hence F (x) = (1 + o(1))H(x)E{Bγ }.
Similarly, if B has the density function g(u), then the density function of F is

f (x) = x−1 H(x)E
{

W −1
x g

(
W −1

x

)}
.

If g satisfies appropriate boundedness conditions, which certainly are satisfied by beta density functions, then the expecta-
tion converges to

E
{

W −1 g
(
W −1)} = γ

∞∫
1

w−γ −2 g
(

w−1)dw = γ E
{

Bγ
}
.

It follows that h(x)/H(x) = (1 + o(1))(γ /x). The direct assertions of Theorem 4.4 follow.
The converse asserts that if Hα,β is regularly varying with index −γ � 0, then H is also regularly varying with index −γ .

If γ > 0, then the proof follows from Theorems 3.3 and 7.2.
Alternatively, we can write Bα,β = Z1/(Z1 + Z2), where Y , Z1, Z2 are independent random variables such that Z1 ∼

gamma(α,1) and Z2 ∼ gamma(β,1). Since Z1 + Z2 ∼ gamma(α + β) is independent of Bα,β , the relation X
d= Y Bα,β is

equivalent to X(Z1 + Z2)
d= Y Z1. It follows from Jessen and Mikosch [20, Lemma 4.2(a)] that the survivor function of Y Z1

is regularly varying with index −γ , and Lemma 17 in Hashorva et al. [18] implies the same is true for H(x). We emphasize
that this proof is valid for γ � 0. �

Note that Theorem 12.3.2 in Berman [4] follows from the above direct proof since

E
{
(1 − Bα,β)γ /2} = E

{
Bγ /2

β,α

} = B(α,β + γ /2)

B(α,β)
.

The situation where B is allowed to be unbounded can be handled by writing

P {Y B > x} = P {Y B > x; Y > x} + P {Y B > x; Y � x}. (7.14)

Exactly as in the last proof, the first term on the right is asymptotically proportional to H(x)P {B > W −1}, but now the
probability term evaluates as

P
{

W > B−1} = P {B � 1} + E
{

Bγ ; B � 1
}
.

The second term on the right-hand side of (7.14) equals

P {x/B � Y � x, B > 1} =
∞∫

1

(
H(x/z) − H(x)

)
dP {B � z}

= (
1 + o(1)

)
H(x)

[
E
{

Bγ ; B > 1
} − P {B > 1}],

provided the limit here can be taken inside the integral. This is permissible if E{Bγ +ε} < ∞ for some ε > 0.
The converse tail equivalence statement is open in general, but see Hashorva et al. [18] for the case where B has a

gamma distribution.
The following result is the analogue of Theorem 7.4 for H ∈ MDA(Ψγ ) and it generalizes the direct assertion of Theo-

rem 4.5.

Theorem 7.5. Let H(0) = 0, rH = 1 and H ∈ MDA(Ψγ ).

(a) If (7.10) holds, then

Î(x) =
1∫

1−x

φ

(
1 − x

y

)
dH(y) = (

1 + o(1)
)
C

Γ (β + 1)Γ (γ + 1)

Γ (β + γ + 1)
xβ H(1 − x), x ↓ 0.
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(b) If (7.11) holds, then

Ĵ (x) =
1∫

1−x

y−1 g

(
1 − x

y

)
dH(y) = (

1 + o(1)
)
c
Γ (β)Γ (γ + 1)

Γ (β + γ )
xβ−1 H(1 − x), x ↓ 0.

Proof. For (a) simply observe that if 1 − x < y < 1, then

φ

(
1 − x

y

)
= (

1 + o(1)
)
C
(

y − (1 − x)
)β

y−β, x ↓ 0.

Hence Î(x) is asymptotically equal to CΓ (β + 1)(Jβ+1,p−β H)(1 − x), and the assertion follows from Theorem 7.3. Similarly,
Ĵ (x) is asymptotically equal to cΓ (β)(Jβ,p−β H)(1 − x). �
Proof of Theorem 4.5. If H ∈ MDA(Ψγ ), then (4.23) and (4.24) follow from (7.7) and Theorem 7.5. �
Proof of Lemma 5.2. It follows from (4.5) that(

y + t/w(y)
)p = (

1 + o(1)
)(

yp + ptyp−1/w(y)
) = (

1 + o(1)
)(

yp + (
t/w p

(
yp)))

,

and hence that the necessary and sufficient condition (4.4) applied to F is equivalent to

lim
y→∞ P

{
X p > yp + t/w p

(
yp) ∣∣ X p > yp} = e−t, t ∈ (0,∞).

Setting x = yp shows this is equivalent to F p ∈ MDA(Λ, w p). �
Proof of Theorem 5.1. Let G2 and H2 denote the distribution functions of U 2 and R2, respectively. It follows from (5.2),
Lemma 5.2 and Theorem 4.1 that

H ∈ MDA(Λ, w) iff H2 ∈ MDA(Λ, w2) iff G2 ∈ MDA(Λ, w2) iff G ∈ MDA(Λ, w).

This, together with Theorem 12.3.3 in Berman [4] implies that (5.3) holds if G ∈ MDA(Λ, w), i.e., (a) is valid.
By the same reasoning, (b) follows if we prove it assuming H ∈ MDA(Λ, w) and H has a density function h. Observing

that Zx has the same distribution as
√

1 − ρ2 S2|S1 = x, we set ρ = 0 without loss of generality. The joint density function
f (u, v) of (U , V ) is radially symmetric and a routine computation yields

f (u, v) = [
2π

√
u2 + v2

]−1
h
(√

u2 + v2
)
.

It is more expedient to work directly in terms of h2(z) = (2
√

z)−1h(
√

z). Integration with respect to v and using the
substitution y = v2 gives the marginal density function of U ,

fU (u) = 1

π

∞∫
0

h2
(

y + u2)y−1/2 dy,

and hence the density function of Zx is

f (v|x) := f (x, v)

fU (x)
= h2(x2 + v2)∫ ∞

0 h2(y + v2)y−1/2 dy
,

valid for real v and x > 0. Note that the distribution of Zx is symmetric about zero.
Let t > 0 and replace v with t/c(x) in this density function. Since c2(x) = 2w2(x2), the density function of c(x)Zx is the

function of s = x2 given by

ζ(t|x) = h2(s + t2/2w2(s))√
2w2(s)

∫ ∞
0 h2(s + y)y−1/2 dy

. (7.15)

Divide the numerator and denominator of the right-hand side by w2(s)H2(s). Since h2(s) = (1 + o(1))w2(s)H2(s), it follows
from Lemma 5.2, (4.4) and (4.6) applied to H2, that the numerator term obtained from (7.15) converges to exp(−t2/2), as
x ↑ rH .

Next, making the substitution z = yw2(s) in the integral at (7.15), the denominator term obtained from the division
operation is
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√
2

w2(s)H2(s)

∞∫
0

h2
(
s + z/w2(s)

)
z−1/2 dz = √

2E
{

W −1/2
s

}
,

where W s is as defined in the proof of Theorem 7.1 (s replacing x there). The moment convergence theorem ensures that

lim
x↑rH

E
{

W −1/2
s

} = E
{

W −1/2} = Γ (1/2) = √
π.

Combining these limits shows that ζ(t|x) converges to the standard Gaussian density function, and the assertion follows. �
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Appendix A

In this short section we state first three properties of the Weyl fractional-order integral operator.

Lemma A.1. Let β, c be positive constants, and let h be a real measurable function.

(i) If h ∈ Iβ+c , then

Iβ Ich = Ic Iβh = Iβ+ch. (A.1)

(ii) If the n-fold derivative h(n) := Dnh exists almost everywhere and h(n) ∈ Iβ , then

Dn Iβh = Iβh(n) (A.2)

and

Dk In = (−1)k In−k, k = 1, . . . ,n. (A.3)

(iii) If λ ∈ (0, β) and H is a distribution function on R with H(0) = 0, then(
Iβ−λ p−β(Iλ p−α−λH)

)
(x) = x−λ(Iβ p−α−β H)(x), ∀x ∈ (0,∞). (A.4)

Proof. Since the first two statements are borrowed from Lemma 2.2 in Pakes and Navarro [31] we need only to prove
statement (iii). Let Y ∼ H , Bα,β , Bα,λ and Bα+λ,β−λ be independent random variables. For any λ ∈ (0, β) we have the
stochastic representation (see (3.1))

Y Bα,β
d= Y ∗Bα+λ,β−λ, Y ∗ d= Y Bα,λ,

with Y ∗ ∼ Hα,λ another random variable independent of Bα+λ,β−λ . Applying (2.5) we obtain for any x ∈ (0, rH )

Hα,β(x) = Γ (α + β)

Γ (α)
xα(Iβ p−α−β H)(x)

= Γ (α + β)

Γ (α + λ)
xα+λ(Iβ−λp−α−β Hα,λ)(x)

and

Hα,λ(x) = Γ (α + λ)

Γ (α)
xα(Iλ p−α−λH)(x).

Consequently

(Iβ p−α−β H)(x) = xλ
(

Iβ−λp−β(Iλp−α−λH)
)
(x),

and the result follows. �
The next theorem, which is an insignificant variation of Theorem 2.2 in Pakes and Navarro [31] shows that the survivor

function H can be retrieved by applying the differential and the Weyl fractional-order integral operator to Hα,β .
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Theorem A.2. Let H, Hα,β , α,β ∈ (0,∞) be as above, with Hα,β(0) = 0. If H(n−1)
α,β is absolutely continuous, and if H(n−i)

α,β ∈ Iδ−α−i ,
i = 0, . . . ,n where δ is chosen so that

β + δ = n ∈ N, δ ∈ [0,1), (A.5)

then

H(x) = (−1)n Γ (α)

Γ (α + β)
xα+β

(
Iδ Dn p−α Hα,β

)
(x) (A.6)

holds for any x ∈ (0, rH ).

Proof. The proof follows immediately from Theorem 2.2 in Pakes and Navarro [31] and the identity

∞∫
x

(y − x)β−1x−c dx = Γ (c − β)

Γ (c)
xβ−c, x ∈ (0,∞). � (A.7)
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