16,495 research outputs found
Bat Algorithm for Multi-objective Optimisation
Engineering optimization is typically multiobjective and multidisciplinary
with complex constraints, and the solution of such complex problems requires
efficient optimization algorithms. Recently, Xin-She Yang proposed a
bat-inspired algorithm for solving nonlinear, global optimisation problems. In
this paper, we extend this algorithm to solve multiobjective optimisation
problems. The proposed multiobjective bat algorithm (MOBA) is first validated
against a subset of test functions, and then applied to solve multiobjective
design problems such as welded beam design. Simulation results suggest that the
proposed algorithm works efficiently.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1004.417
A convergence acceleration operator for multiobjective optimisation
A novel multiobjective optimisation accelerator is
introduced that uses direct manipulation in objective space
together with neural network mappings from objective space to decision space. This operator is a portable component that can be hybridized with any multiobjective optimisation algorithm. The purpose of this Convergence Acceleration Operator (CAO) is to enhance the search capability and the speed of convergence of the host algorithm. The operator acts directly in objective space to suggest improvements to solutions obtained by a multiobjective evolutionary algorithm (MOEA). These suggested improved objective vectors are then mapped into decision variable space and tested. The CAO is incorporated with two leading MOEAs, the Non-Dominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2) and tested. Results show that the hybridized algorithms consistently improve the speed of convergence of the original algorithm whilst maintaining the desired distribution of solutions
Application of a new multi-agent Hybrid Co-evolution based Particle Swarm Optimisation methodology in ship design
In this paper, a multiple objective 'Hybrid Co-evolution based Particle Swarm Optimisation' methodology (HCPSO) is proposed. This methodology is able to handle multiple objective optimisation problems in the area of ship design, where the simultaneous optimisation of several conflicting objectives is considered. The proposed method is a hybrid technique that merges the features of co-evolution and Nash equilibrium with a ε-disturbance technique to eliminate the stagnation. The method also offers a way to identify an efficient set of Pareto (conflicting) designs and to select a preferred solution amongst these designs. The combination of co-evolution approach and Nash-optima contributes to HCPSO by utilising faster search and evolution characteristics. The design search is performed within a multi-agent design framework to facilitate distributed synchronous cooperation. The most widely used test functions from the formal literature of multiple objectives optimisation are utilised to test the HCPSO. In addition, a real case study, the internal subdivision problem of a ROPAX vessel, is provided to exemplify the applicability of the developed method
On the evolutionary optimisation of many conflicting objectives
This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and recombination operator configurations. Performance maps are obtained for the dual aims of
proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots for both variation operators are observed to contract as the number of objectives is increased. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance for higher numbers of objectives, even when large population
sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion
Free Lunch or No Free Lunch: That is not Just a Question?
The increasing popularity of metaheuristic algorithms has attracted a great
deal of attention in algorithm analysis and performance evaluations.
No-free-lunch theorems are of both theoretical and practical importance, while
many important studies on convergence analysis of various metaheuristic
algorithms have proven to be fruitful. This paper discusses the recent results
on no-free-lunch theorems and algorithm convergence, as well as their important
implications for algorithm development in practice. Free lunches may exist for
certain types of problem. In addition, we will highlight some open problems for
further research.Comment: 14 page
Disjunctive programming for multiobjective discrete optimisation
In this paper, I view and present the multiobjective discrete optimisation problem as a particular case of disjunctive programming where one seeks to identify efficient solutions from within a disjunction formed by a set of systems. The proposed approach lends itself to a simple yet effective iterative algorithm that is able to yield the set of all nondominated points, both supported and nonsupported, for a multiobjective discrete optimisation problem. Each iteration of the algorithm is a series of feasibility checks and requires only one formulation to be solved to optimality that has the same number of integer variables as that of the single objective formulation of the problem. The application of the algorithm show that it is particularly effective, and superior to the state-of-the-art, when solving constrained multiobjective discrete optimisation problem instances
- …
