244 research outputs found

    Beam Splitting Planar Inverted F Antenna For 5G Communication

    Get PDF
    A planar inverted-F antenna with symmetrical split beams and loaded with radio frequency absorbers (here Eccosorb MCS) for 5G communication is proposed. The multi-beam antennas reduce the requirement of number of antennas and provide wide coverage. But they require a complex system such as a phased array or MIMO antennas. On the other hand, multi-beam antennas do not have such requirements. In this work, we propose a PIFA antenna which achieves multi-beam behaviour by six slabs of absorbers placed periodically between the PIFA patch and substrate to split the beams into two directions at +26°. The proposed antenna obtains a frequency band of 24.2- 25.7 GHz and achieves a high gain of approximately 10 dB at +26°. The performance of the proposed antenna is suitable for G communication. All simulations of the antenna are carried out using Ansys HFSS. The design was validated by simulations and later confirmed with measurements. &nbsp

    MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey

    Full text link
    Multi-beam antenna technologies have provided lots of promising solutions to many current challenges faced in wireless mesh networks. The antenna can establish several beamformings simultaneously and initiate concurrent transmissions or receptions using multiple beams, thereby increasing the overall throughput of the network transmission. Multi-beam antenna has the ability to increase the spatial reuse, extend the transmission range, improve the transmission reliability, as well as save the power consumption. Traditional Medium Access Control (MAC) protocols for wireless network largely relied on the IEEE 802.11 Distributed Coordination Function(DCF) mechanism, however, IEEE 802.11 DCF cannot take the advantages of these unique capabilities provided by multi-beam antennas. This paper surveys the MAC protocols for wireless mesh networks with multi-beam antennas. The paper first discusses some basic information in designing multi-beam antenna system and MAC protocols, and then presents the main challenges for the MAC protocols in wireless mesh networks compared with the traditional MAC protocols. A qualitative comparison of the existing MAC protocols is provided to highlight their novel features, which provides a reference for designing the new MAC protocols. To provide some insights on future research, several open issues of MAC protocols are discussed for wireless mesh networks using multi-beam antennas.Comment: 22 pages, 6 figures, Future of Information and Communication Conference (FICC) 2019, https://doi.org/10.1007/978-3-030-12388-8_

    Dynamically reconfigurable directionality of plasmon-based single photon sources

    Get PDF
    We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication

    Analytical High-efficiency Spot beam Model for High Throughput Satellites

    Get PDF
    We develop a simple model for a feed horn with a uniformly excited circular aperture at the focus of an offset paraboloidal reflector antenna and compare it with reflector antenna analyses using combinations of circular waveguide TE1n modes. The model demonstrates the deep dip that can occur at the center of the spot beam for certain feed diameters and it is used in a design procedure that relates the feed and the spot-beam diameter. The model may be extended to include feed horn flare effects

    Study of bifocal dual reflectarray configurations for multi-beam antennas in ka-band

    Get PDF
    This paper describes the design of multi-beam dual reflectarray antennas for operation in the Ka-band satellite transmission band (around 20 GHz), using the bifocal design concept to improve antenna performance. This technique has been first applied to obtain beam compression with adjacent feeds, resulting in low radiation efficiency. Then it has been used without beam compression to correct beam aberration, showing better results than an equivalent single-focus reference reflector. The simulated radiation patterns in the elevation plane and the amplitude distributions of the incident field on each reflectarray have been calculated for different antenna configurations

    National Aeronautics and Space Administration plans for space communication technology

    Get PDF
    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan
    corecore