10,901 research outputs found

    Event-Based Motion Segmentation by Motion Compensation

    Full text link
    In contrast to traditional cameras, whose pixels have a common exposure time, event-based cameras are novel bio-inspired sensors whose pixels work independently and asynchronously output intensity changes (called "events"), with microsecond resolution. Since events are caused by the apparent motion of objects, event-based cameras sample visual information based on the scene dynamics and are, therefore, a more natural fit than traditional cameras to acquire motion, especially at high speeds, where traditional cameras suffer from motion blur. However, distinguishing between events caused by different moving objects and by the camera's ego-motion is a challenging task. We present the first per-event segmentation method for splitting a scene into independently moving objects. Our method jointly estimates the event-object associations (i.e., segmentation) and the motion parameters of the objects (or the background) by maximization of an objective function, which builds upon recent results on event-based motion-compensation. We provide a thorough evaluation of our method on a public dataset, outperforming the state-of-the-art by as much as 10%. We also show the first quantitative evaluation of a segmentation algorithm for event cameras, yielding around 90% accuracy at 4 pixels relative displacement.Comment: When viewed in Acrobat Reader, several of the figures animate. Video: https://youtu.be/0q6ap_OSBA

    Learning to Detect and Track Cells for Quantitative Analysis of Time-Lapse Microscopic Image Sequences

    Get PDF
    © 2015 IEEE.Studying the behaviour of cells using time-lapse microscopic imaging requires automated processing pipelines that enable quantitative analysis of a large number of cells. We propose a pipeline based on state-of-the-art methods for background motion compensation, cell detection, and tracking which are integrated into a novel semi-automated, learning based analysis tool. Motion compensation is performed by employing an efficient nonlinear registration method based on powerful discrete graph optimisation. Robust detection and tracking of cells is based on classifier learning which only requires a small number of manual annotations. Cell motion trajectories are generated using a recent global data association method and linear programming. Our approach is robust to the presence of significant motion and imaging artifacts. Promising results are presented on different sets of in-vivo fluorescent microscopic image sequences

    The stellar and solar tracking system of the Geneva Observatory gondola

    Get PDF
    Sun and star trackers have been added to the latest version of the Geneva Observatory gondola. They perform an image motion compensation with an accuracy of plus or minus 1 minute of arc. The structure is held in the vertical position by gravity; the azimuth is controlled by a torque motor in the suspension bearing using solar or geomagnetic references. The image motion compensation is performed by a flat mirror, located in front of the telescope, controlled by pitch and yaw servo-loops. Offset pointing is possible within the solar disc and in a 3 degree by 3 degree stellar field. A T.V. camera facilitates the star identification and acquisition

    Minimal Solvers for Monocular Rolling Shutter Compensation under Ackermann Motion

    Full text link
    Modern automotive vehicles are often equipped with a budget commercial rolling shutter camera. These devices often produce distorted images due to the inter-row delay of the camera while capturing the image. Recent methods for monocular rolling shutter motion compensation utilize blur kernel and the straightness property of line segments. However, these methods are limited to handling rotational motion and also are not fast enough to operate in real time. In this paper, we propose a minimal solver for the rolling shutter motion compensation which assumes known vertical direction of the camera. Thanks to the Ackermann motion model of vehicles which consists of only two motion parameters, and two parameters for the simplified depth assumption that lead to a 4-line algorithm. The proposed minimal solver estimates the rolling shutter camera motion efficiently and accurately. The extensive experiments on real and simulated datasets demonstrate the benefits of our approach in terms of qualitative and quantitative results.Comment: Submitted to WACV 201

    Optical flow-based vascular respiratory motion compensation

    Full text link
    This paper develops a new vascular respiratory motion compensation algorithm, Motion-Related Compensation (MRC), to conduct vascular respiratory motion compensation by extrapolating the correlation between invisible vascular and visible non-vascular. Robot-assisted vascular intervention can significantly reduce the radiation exposure of surgeons. In robot-assisted image-guided intervention, blood vessels are constantly moving/deforming due to respiration, and they are invisible in the X-ray images unless contrast agents are injected. The vascular respiratory motion compensation technique predicts 2D vascular roadmaps in live X-ray images. When blood vessels are visible after contrast agents injection, vascular respiratory motion compensation is conducted based on the sparse Lucas-Kanade feature tracker. An MRC model is trained to learn the correlation between vascular and non-vascular motions. During the intervention, the invisible blood vessels are predicted with visible tissues and the trained MRC model. Moreover, a Gaussian-based outlier filter is adopted for refinement. Experiments on in-vivo data sets show that the proposed method can yield vascular respiratory motion compensation in 0.032 sec, with an average error 1.086 mm. Our real-time and accurate vascular respiratory motion compensation approach contributes to modern vascular intervention and surgical robots.Comment: This manuscript has been accepted by IEEE Robotics and Automation Letter
    • …
    corecore