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ABSTRACT

Studying the behaviour of cells using time-lapse microscopic
imaging requires automated processing pipelines that enable quan-
titative analysis of a large number of cells. We propose a pipeline
based on state-of-the-art methods for background motion compen-
sation, cell detection, and tracking which are integrated into a novel
semi-automated, learning based analysis tool. Motion compensation
is performed by employing an efficient nonlinear registration method
based on powerful discrete graph optimisation. Robust detection and
tracking of cells is based on classifier learning which only requires
a small number of manual annotations. Cell motion trajectories are
generated using a recent global data association method and linear
programming. Our approach is robust to the presence of significant
motion and imaging artifacts. Promising results are presented on
different sets of in-vivo fluorescent microscopic image sequences.

Index Terms— Motion Compensation, Cell Detection and
Tracking, Fluorescent Time-lapse Microscopic Imaging

1. INTRODUCTION

To contribute to homeostasis, protective immunity and pathology,
leukocytes (white blood cells) have to be able to move between or-
gans and within tissues. Recent advances in fluorescent reporter
technology and light microscopy have provided better images than
ever before of the location and behaviour of leukocytes in complex
3D environments and also within different tissues in intact living
organisms [1]. However, a significant bottleneck in converting these
images into interpretable data is their reliable analysis. Fluorescently
labelled cells must be tracked through time-lapse image-series data
of varying contrast [2]. Often the most effective way to do this is by
labour intensive and manual annotation, however, this seriously lim-
its the number of cells that can be analysed (and thus the conclusions
that may be drawn).

In order to enable quantitative analysis of a large number of
cells, we propose a semi-automated processing pipeline based on
state-of-the-art methods for background motion compensation, cell
detection, and tracking. Figure 1 illustrates the pipeline components
and their order of execution. Before describing each component in
detail in Section 2, we first discuss related work in the area of time-
lapse microscopic image processing. In Section 3, we demonstrate
the performance of our approach on a set of challenging microscopic
image sequences. We conclude the paper in Section 4 with a discus-
sion about limitations and future work.

Fig. 1. Our processing pipeline for analysing time-lapse microscopic
image sequences. First, we compensate for background motion in-
duced by in-vivo laser scanning techniques and cardiac and respira-
tory activity. Then, cells are detected and tracked over time to obtain
motion trajectories which enable the analysis of cell behaviour.

1.1. Related work

There is a substantial body of research into methods for cell detec-
tion and tracking, and a detailed survey is beyond the scope of this
paper. An introduction to the topic and an overview of different
methods and successes is provided by Meijering et al. [3]. Many
approaches are tailored towards a particular imaging technique, and
not directly applicable to novel sequences. To this end, we utilise
two recently proposed approaches for detection [4] and tracking [5]
which have been shown to generalise well and are applicable to data
with varying characteristics. We modify and extend those methods
and integrate them into our processing pipeline that has a motion
compensation component as the first pre-processing step. A recently
proposed motion compensation method [6] divides the image frames
into segments and allows to compensate for translational motion be-
tween segments based on maximising correlation. While this method
can effectively remove motion artifacts it necessitates the presence
of a motion free period which might require modifications to the
imaging protocol in terms of setting proper acquisition times [6]. In
contrast, our method based on image registration can handle arbi-
trary, nonlinear background motion and does not impose particular
constraints on the image acquisition. The details of the different pro-
cessing components are described in the following.

2. METHOD

Our processing pipeline consists of three main components, motion
compensation, cell detection, and tracking which are described the
following subsections. The overall pipeline and how the components
are connected is shown in Figure 1.
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Fig. 2. Illustration of the effect of background motion compensation.
(a) Background channel used as reference image. (b) The (colour-
coded) dense displacement field obtained when compensating the
motion of the adjacent image frame. Motion artifacts caused by the
laser scanning microscopy technique are clearly visible as streak-like
patterns. In (c) and (d) close-ups of overlays of the reference frame
and its adjacent frame before and after motion compensation. In
(e)-(h) close-ups of overlays of the fluorescent image channels with
leukocytes before and after motion compensation. Note, how the
apparent motion of non-moving cells is compensated (i,iii), while
actual cell motion is preserved (ii) and even corrected (iv). These
observations are confirmed by visually inspecting subsequent frames
and the corresponding locations of moving and non-moving cells.

2.1. Background motion compensation

The first component of the processing pipeline is a fully-automatic
background motion compensation which makes use of an efficient
nonlinear registration method based on graph optimisation [7]. This
component aims at removing non-cell related motion caused by car-
diac and respiratory activity and the imaging procedure itself, e.g.
from “line-by-line” techniques such as laser scanning microscopy.
It is important to compensate for this “background motion”, which
might be otherwise mistakenly accounted for actual cell motion and
could cause wrong conclusions about cell behaviour. An illustration
of the effect of our motion compensation is shown in Figure 2.

We define a temporal sequence of microscopic images as I =
{It} with It being the tth frame. Fluorescent imaging allows to
simultaneously capture multi-channel images, where one of the im-
age channels is explicitly used to capture background structure only
(i.e, non-fluorescent tissue). We denote this background channel of
frame t by Ibt . For estimating the nonlinear motion between frames,
we employ an intensity-based registration method using correlation
coefficient (CC) as the similarity measure. The registration is per-
formed on the background channels. Thus, we avoid the compen-
sation of actual cell motion. We randomly select one frame of the
sequence as the reference frame, denoted as Ibr . For all other frames
t, we then solve the optimisation problem

T̂ = arg min
T
E(Ibt ◦ T, Ibr) , (1)

where T (x) = x + D(x) is a nonlinear spatial transformation of
image coordinates x with a dense displacement field D. The energy
function consists of the similarity measure and a regularisation term
that favours smooth displacement fields:

E(Ibt ◦ T, Ibr)=−SCC(Ibt ◦ T, Ibr) + λR(T ) , (2)

(a) fluorescent channel (b) cell candidates (MSER)

Fig. 3. First step of the cell detection component. In (a) is the input
channel, and in (b) the MSER cell detections are overlaid in green.

where λ influences the amount of regularisation. The employed reg-
istration method makes use of free-form deformations as compact
representation of the dense displacement field. The optimisation it-
self is performed using iterative multi-label graph-cuts, and for a pair
of images of size 512×512 the registration takes only about 2 sec-
onds. The estimated transformation is then used to warp the other
(fluorescent) channels of the image frames. This results in a motion
compensated multi-channel image sequence which is then passed to
the next component of the processing pipeline.

2.2. Cell detection

Our cell detection component is a modified version of the recently
proposed method by Arteta et al. [4]. The detector operates in three
steps. First, a larger number of cell candidate regions is extracted
from a fluorescent image using the Maximally Stable Extremal Re-
gion (MSER) detector [8]. This leads to a high recall, but relatively
low precision. Figure 3 shows an example output of the MSER de-
tector. In the second step, each of these regions Ri is assigned a
probability P (Ri) of being a cell obtained from a learned structured
SVM classifier. The SVM can be trained on a relatively small num-
ber of training images (e.g., using the first few frames of a sequence)
in which cells are annotated with single dots. In order to find the
best set of features, we have evaluated the performance of the classi-
fier on several combinations of features, namely the area of a region,
intensity features, spatial locations, and shape. Overall best perfor-
mance was obtained using the histogram of pixel intensities within
the region, a shape descriptor of the boundary of the region, and a
histogram of differences of intensities between the region border and
a dilation of it. Based on the classifier output, the third step aims for
selecting an optimal non-overlapping subset of candidates by max-
imising the sum of probabilities defined as

ŷ = arg max
y∈Y

N∑
i=1

P (Ri) yi , (3)

where yi are indicator variables with yi = 1 implying that region
Ri is part of the subset, and thus, a detected cell. Here, Y is the
space of non-overlapping subsets. In order to solve this problem
efficiently via dynamic programming, the regions are organised in a
tree structure according to a nestedness property. The exact details
of this step can be found in [4].

2.3. Cell tracking

The last component of the pipeline takes the cell detections on every
frame as input, and generates cell motion trajectories by linking de-



Fig. 4. The cell tracking works in two steps. First, detections that are
very similar are linked into robust tracklets, which are then combined
into longer trajectories. Gaps of several frames can be bridged.

tections between frames. It is important that the cell tracking compo-
nent can deal with false positive and negative detections. Similar to
the work by Bise et al. [5], our cell tracking method consists of two
steps. First, cell detections are linked into robust tracklets, which are
(shorter) sequences of cell detections between adjacent frames that
can be linked with high confidence where no gaps are allowed. The
second step then combines robust tracklets into (longer) sequences,
or trajectories, using a linking model that allows to bridge between
frames with missing detections. Figure 4 illustrates the two steps.

Linking detections into robust tracklets is based on evaluating
the similarity between cell regions. To this end, we learn a naive
Bayes classifier from example pairs annotated on the training frames.
Negative examples are generated automatically by randomly sam-
pling non-corresponding pairs. Only if the classifier predicts high
similarity between two detections, a link is created. The similarity is
based on the same set of features as used for the cell detector.

The process of linking robust tracklets into trajectories is then
performed using a global data association approach which has been
shown to perform favourably compared to alternatives [5]. The solu-
tion to the underlying maximum-a-posteriori (MAP) problem, which
selects an optimal hypothesis of linking robust tracklets into trajec-
tories, is computed using linear programming. Using Bayes’ rule,
the MAP problem can be rewritten as a product of probabilities

T∗ = arg max
T

P (T|X)

= arg max
T

∏
Xi∈X

P (Xi|T)
∏

Tk∈T

Ptraj(Tk) (4)

Here, T is a set of trajectories generated from the robust tracklets X.
Similar to [5], the likelihood of a robust tracklet Xi is defined as

P (Xi|T) =

{
PTP (Xi) if ∃Tk ∈ T, Xi ∈ Tk

PFP (Xi) otherwise , (5)

where PTP (Xi) = α
|Xi|
β is the probability of being a true positive,

|Xi| is the number of detections, α corresponds to the miss detection
rate, and β is a tuning parameter. The probability of false positives is
then PFP (Xi) = 1−PTP (Xi). The prior probability of a trajectory
Tk consisting of {Xk

j }nj=1 tracklets is defined as a Markov chain

Ptraj(Tk) = Pinit(X
k
1 )

[
n−1∏
j=1

Plink(Xk
j+1|Xk

j )

]
Pterm(Xk

n) .

(6)
Here, Pinit and Pterm are the probabilities of tracklets being the
first and the last elements of a trajectory, and Plink is the probability

Datasets Annotations

Id Tissue Size Frames Frames Cells Traject. Avg. C/F Std. C/F

A Liver 512 x 512 66 66 104 2 1.58 0.86

B Liver 512 x 512 66 66 530 14 8.03 2.44

C Lung 251 x 251 126 58 1128 7 19.45 4.19

D Lung 199 x 199 377 53 547 5 10.32 2.54

E Lung 277 x 277 194 67 470 7 7.01 2.25

Table 1. Details about the datasets with annotation statistics. The
last two columns provide the ratios of cells per frame. Dataset A
contains only a very few cells per frame. Our results indicate that
this negatively affects the detection performance.

of linking two tracklets having distance ∆(Xi, Xj), defined as

Plink(Xi|Xj) =

{
V (Xi, Xj) if ∆(Xi, Xj) ≤ δmax

0 otherwise . (7)

The similarity V (Xi, Xj) is learned using a binary neural net with
Bayesian regularisation. To this end, a set of spatio-temporal and vi-
sual features are computed for pairs of tracklets. The features include
the cell region descriptor used in the detection component, spatial in-
formation such as location and orientation of tracklets, and temporal
distance (such as gap size and velocity) between start and end points
of tracklets. The parameter δmax limits the gap size that is con-
sidered for bridging over frames with missing detections. Based on
Plink, we define Pinit and Pterm as

Pinit|term(Xi) =

{
1−maxPlink(Xi|Xj) ∀Xj ∈ X
0 otherwise .

(8)
which is equal to the probability of a tracklet Xi not being linked to
its most similar tracklet. This allows trajectories to be initialised and
terminate anywhere and at anytime in the sequence.

The advantage of the global data association approach is that
all hypotheses over all frames of the sequence are considered simul-
taneously, rather than propagating the results from frame to frame.
This makes the method robust to errors of the frame-by-frame cell
detection component.

3. EXPERIMENTAL EVALUATION

We have tested our processing pipeline on five different microscopic
image sequences with different imaging characteristics. Details
about the number of frames, tissue type and annotation statistics per
dataset are summarised in Table 1. In the following, we will present
quantitative and qualitative results for different datasets.

3.1. Detection accuracy

In order to evaluate the accuracy of the cell detector, we used 70%
of the annotations for training, and 30% for testing. Accuracy is
quantified via precision, recall, and F1-score. Besides training and
testing on frames from the same sequence, we were also interested in
the generalisation performance when training and testing sequences
do not overlap. This would enable a fully-automatic system where
training is done only once. The quantitative results are summarised
in Table 2. The F1-scores for training and testing on frames from
the same sequence are 0.24, 0.90, 0.80, 0.86, 0.85, respectively for
datasets A-E. Those increase for A to 0.54 and E to 0.88 when train-
ing is performed on the combined set ABCE. The F1-scores for the



Training
Set

Precision Recall

A B C D E A B C D E

Individual 0.25 0.90 0.77 0.86 0.93 0.23 0.89 0.84 0.85 0.79

ABCDE 0.49 0.76 0.85 0.69 0.95 0.58 0.91 0.57 0.99 0.80

ABCD_ 0.49 0.77 0.86 0.70 0.93 0.58 0.90 0.59 0.98 0.81

ABC_E 0.46 0.75 0.83 0.41 0.87 0.65 0.96 0.74 0.99 0.90

AB_DE 0.48 0.76 0.86 0.73 0.97 0.51 0.89 0.46 0.97 0.68

A_CDE 0.41 0.63 0.86 0.71 0.95 0.58 0.89 0.57 0.99 0.80

_BCDE 0.49 0.76 0.86 0.72 0.94 0.58 0.90 0.56 0.97 0.76

Table 2. Detection accuracy on five different datasets and combi-
nations of training and testing. Numbers in red correspond to the
highest F1-score. Numbers in blue correspond to the results when
training and testing frames are taken from different image sequences.
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Fig. 5. Qualitative comparison of generated trajectories and their
manual annotations for dataset B with 66 frames. Robust tracklets
have been correctly linked into longer trajectories of cell motion.

case when training and testing sequences do not overlap are 0.53,
0.74, 0.60, 0.58, 0.87. The poor performance on dataset A is ex-
plained by a sudden contrast change within the sequence, and train-
ing on frames from other sequences improves the detection accuracy.

3.2. Tracking performance

To quantify the performance of the tracking component, we employ
two metrics (also used in [5]), namely the target effectiveness (TE)
and track purity (TP). TE corresponds to the percentage of frames in
which a target (i.e., an annotation) is followed by a trajectory com-
pared to the total number of target frames. Equivalently, TP corre-
sponds to the percentage of frames in which a trajectory is followed
by a target compared to the total number of trajectory frames. No
tracking results were obtained for dataset A due to the poor detec-
tion performance. For datasets B-E the corresponding TE and TP
values are 0.91/1.00, 0.93/0.88, 0.98/0.77, 0.94/0.93. A visual com-
parison between computed trajectories and manual annotations for
dataset B is shown in Figure 5. The method can effectively bridge
gaps between frames with false negative detection responses.

4. DISCUSSION

Our proposed processing pipeline combines state-of-the-art compo-
nents for motion compensation, cell detection and tracking which
achieves promising results on a set of different microscopic image
sequences. An advantage of this modular approach is that individual
components can be easily exchanged with either application-specific
components (if needed) or with “updates” according to future ad-
vances in registration, detection and tracking methodology. Limi-
tations such as the non-overlapping constraint, for example, could
be addressed using a different detection procedure [9]. Next steps
include an evaluation on longer sequences. We are currently acquir-
ing in-vivo sequences over periods of up to 30 minutes with several
thousand frames. This poses new challenges in terms of robustness
and efficiency for the employed processing methods. In order to fa-
cilitate future research and comparison with other approaches, the
source code of our methods will be made publicly available.
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