34 research outputs found

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    28GHz multiple input multiple output planar antenna for 5G mobile communication

    Get PDF
    v ABSTRACT Fifth generation (5G) is the next major phase of mobile telecommunications standards beyond the current 4G, which will operate at millimeter-wave frequency band. This thesis presents designs for MIMO planar antennas (single element and arrays at 28 GHz) Based on the best optimized single element patch, antenna array is designed at 28 GHz. An array theoretically offers higher gain compared to single antenna and offers more directive beam. The planar antennas are designed on Rogers RT Duroid with permittivity of 2.2 and the thickness of 0.381 mm. All structures are simulated and optimized using CST software. The performance are analyzed by means of the S parameters and the radiation pattern of the planar antenna. For single element antenna, are well matched at 28 GHz with S11 of -25.54 db in inset feed, and with S11 of -13.53 db in aperture coupled feed. The gain of single element antenna using inset feed is 7.721 db, while the gain of single element antenna using aperture coupled feed is 7.084 db. For 2x1 elements MIMO antenna using different two feeding techniques. The antenna is well matched at 28 GHz with S11 of -17.69 db, S21 of -34.78 db in inset feed, and with S11 of -17.3 db, S21 of -39.03 db in aperture coupled feed. The gain of single element antenna using inset feed is 8.169 db, while the gain of single element antenna using aperture coupled feed is 7.899 db. For 2x2 elements antenna array using aperture coupled feeding techniques. The antenna is well matched at 28 GHz with S11 of -10.2 db. The gain of 2x2 elements MIMO antenna using aperture coupled feed is 10.16 db

    Capacity Enhancement in 60 GHz Based D2D Networks by Relay Selection and Scheduling

    Get PDF
    Millimeter-wave or 60 GHz communication is a promising technology that enables data rates in multigigabits. However, its tremendous propagation loss and signal blockage may severely affect the network throughput. In current data-centric device-to-device (D2D) communication networks, the devices with intended data communications usually lay in close proximity, unlike the case in voice-centric networks. So the network can be visualized as a naturally formed groups of devices. In this paper, we jointly consider resource scheduling and relay selection to improve network capacity in 60 GHz based D2D networks. Two types of transmission scenarios are considered in wireless personal area networks (WPANs), intra and intergroup. A distributed receiver based relay selection scheme is proposed for intragroup transmission, while a distance based relay selection scheme is proposed for intergroup transmission. The outage analysis of our proposed relay selection scheme is provided along with the numerical results. We then propose a concurrent transmission scheduling algorithm based on vertex coloring technique. The proposed scheduling algorithm employs time and space division in mmWave WPANs. Using vertex multicoloring, we allow transmitter-receiver (Tx-Rx) communication pairs to span over more colors, enabling better time slot utilization. We evaluate our scheduling algorithm in single-hop and multihop scenarios and discover that it outperforms other schemes by significantly improving network throughput

    The Feasibility of Coexistence Between 5G and Existing Services in the IMT-2020 Candidate Bands in Malaysia

    Get PDF
    In 2015, the international telecommunication union (ITU) proposed 11 candidate millimeter-wave bands between 24 and 86 GHz for the deployment of future fifth mobile generation (5G) broadband systems. Furthermore, the ITU called for spectrum-sharing studies in these bands. Since 5G specifications are not yet defined, the utilization of radio spectrum by 5G mobile systems will assist in identifying these specifications. This paper introduces Malaysia as a case study for the deployment of 5G systems. This includes a discussion of the current status of the Malaysian telecommunication market. Then, we investigate the current services that are already deployed in the proposed bands. Our investigation shows that the fixed (F) service is the most deployed as a primary service in the candidate bands. For this reason, a preliminary spectrum-sharing study is conducted on the basis of a modified 5G spectrum-sharing model to evaluate the feasibility of coexistence between 5G and F services in the 28-GHz band. Our modified methodology can be used for spectrum-sharing studies between 5G and any other services for an initial spectrum-sharing investigation. The results show that the F service will be severely affected by the 5G system transition in the 28-GHz band, especially in the base station (BS)-to-BS sharing scenario. The best band from the perspective of current spectrum allocation for 5G systems is the 45-GHz (i.e., 45.5-47 GHz) band, since it is already reserved for mobile service for primary allocation and not utilized. This paper is carried out concurrently with current worldwide efforts investigating spectrum sharing, as requested by the ITU in agenda item 1.13 for the next world radio conference 2019

    Enabling Millimeter Wave Communication for 5G Cellular Networks: MAC-layer Perspective

    Get PDF
    Data traffic among mobile devices increases dramatically with emerging high-speed multimedia applications such as uncompressed video streaming. Many new applications beyond personal communications involve tens or even hundreds of billions wireless devices, such as wireless watch, e-health sensors, and wireless glass. The number of wireless devices and the data rates will continue to grow exponentially. Quantitative evidences forecast that total data rate by 2020 will be 1000 times of current 4G data rate. Next generation wireless networks need fundamental changes to satisfy the overwhelming capacity demands. Millimeter wave (mmWave) communication with huge available bandwidth is a very promising solution for next generation wireless networks to overcome the global bandwidth shortage at saturated microwave spectrum. The large available bandwidth can be directly translated into high capacity. mmWave communication has several propagation characteristics including strong pathloss, atmospheric and rain absorption, low diffraction around obstacles and penetration through objects. These propagation characteristics create challenges for next generation wireless networks to support various kinds of emerging applications with different QoS requirements. Our research focuses on how to effectively and efficiently exploit the large available mmWave bandwidth to achieve high capacity demand while overcoming these challenges on QoS provisioning for various kinds of applications. This thesis focuses on MAC protocol design and analysis for mmWave communication to provide required capacity and QoS to support various kinds of applications in next generation wireless networks. Specifically, from the transmitter/receiver perspective, multi-user beamforming based on codebook is conducted to determine best transmission/reception beams to increase network capacity considering the mutual interferences among concurrent links. From the channel perspective, both interfering and non-interfering concurrent links are scheduled to operate simultaneously to exploit spatial reuse and improve network capacity. Link outage problem resulting from the limited diffraction capability and low penetration capability of mmWave band is addressed for quality provisioning by enabling multi-hop transmission to replace the link in outage (for low-mobility scenarios) and buffer design with dynamic bandwidth allocation among all the users in the whole coverage area (for high-mobility scenarios). From the system perspective, system structure, network architecture, and candidate MAC are investigated and novel backoff mechanism for CSMA/CA is proposed to give more transmission opportunity to faraway nodes than nearby nodes in order to achieve better fairness and higher network capacity. In this thesis, we formulate each problem mentioned above as an optimization problem with the proposed algorithms to solve it. Extensive analytical and simulation results are provided to demonstrate the performance of the proposed algorithms in several aspects, such as network capacity, energy efficiency, link connectivity and so on

    New challenges in wireless and free space optical communications

    Get PDF
    AbstractThis manuscript presents a survey on new challenges in wireless communication systems and discusses recent approaches to address some recently raised problems by the wireless community. At first a historical background is briefly introduced. Challenges based on modern and real life applications are then described. Up to date research fields to solve limitations of existing systems and emerging new technologies are discussed. Theoretical and experimental results based on several research projects or studies are briefly provided. Essential, basic and many self references are cited. Future researcher axes are briefly introduced
    corecore