8,945 research outputs found

    Ground data investigations Mt. Lassen, site 56-mission 76

    Get PDF
    Microwave radiometry and infrared photography for meteorological dat

    Proceedings of the Interdisciplinary Workshop on Vertical Radiometric Probing

    Get PDF
    Rayleigh and Mie scattering, passive microwave radiometry, and linear and nonlinear inversion methods for inferring atmospheric thermal structure from satellite observation

    Basic data requirements for microwave radiometer systems

    Get PDF
    Microwave radiometry has emerged over the last two decades to become an integral part of the field of environmental remote sensing. Numerous investigations were conducted to evaluate the use of microwave radiometry for atmospheric, oceanographic, hydrological, and geological applications. Remote sensing of the earth using microwave radiometry began in 1968 by the Soviet satellite Cosmos 243, which included four microwave radiometers (Ulably, 1981). Since then, microwave radiometers were included onboard many spacecraft, and were used to infer many physical parameters. Some of the basic concepts of radiometric emission and measurement will be discussed. Several radiometer systems are presented and an overview of their operation is discussed. From the description of the radiometer operation the data stream required from the radiometer and the general type of algorithm required for the measurement is discussed

    Applications of airborne remote sensing in atmospheric sciences research

    Get PDF
    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry

    Dielectric properties measurements of brown and white adipose tissue in rats from 0.5 to 10 GHz

    Get PDF
    Brown adipose tissue (BAT) plays an important role in whole body metabolism and with appropriate stimulus could potentially mediate weight gain and insulin sensitivity. Although imaging techniques are available to detect subsurface BAT, there are currently no viable methods for continuous acquisition of BAT energy expenditure. Microwave (MW) radiometry is an emerging technology that allows the quantification of tissue temperature variations at depths of several centimeters. Such temperature differentials may be correlated with variations in metabolic rate, thus providing a quantitative approach to monitor BAT metabolism. In order to optimize MW radiometry, numerical and experimental phantoms with accurate dielectric properties are required to develop and calibrate radiometric sensors. Thus, we present for the first time, the characterization of relative permittivity and electrical conductivity of brown (BAT) and white (WAT) adipose tissues in rats across the MW range 0.5-10GHz. Measurements were carried out in situ and post mortem in six female rats of approximately 200g. A Cole-Cole model was used to fit the experimental data into a parametric model that describes the variation of dielectric properties as a function of frequency. Measurements confirm that the dielectric properties of BAT (εr = 14.0-19.4, σ = 0.3-3.3S/m) are significantly higher than those of WAT (εr = 9.1-11.9, σ = 0.1-1.9S/m), in accordance with the higher water content of BAT

    The Use of Cryogenic HEMT Amplifiers in Wide Band Radiometers

    Get PDF
    Advances in device fabrication, modelling and design techniques have made wide band, low noise cryogenic amplifiers available at frequencies up to 106 GHz. Microwave radiometry applications as used in radio astronomy capitalize on the low noise and large bandwidths of these amplifiers. Radiometers must be carefully designed so as to preclude sensitivity degradations caused by small, low frequency gain fluctuations inherent in these amplifiers

    Dynamic Bayesian Nonlinear Calibration

    Full text link
    Statistical calibration where the curve is nonlinear is important in many areas, such as analytical chemistry and radiometry. Especially in radiometry, instrument characteristics change over time, thus calibration is a process that must be conducted as long as the instrument is in use. We propose a dynamic Bayesian method to perform calibration in the presence of a curvilinear relationship between the reference measurements and the response variable. The dynamic calibration approach adequately derives time dependent calibration distributions in the presence of drifting regression parameters. The method is applied to microwave radiometer data and simulated spectroscopy data based on work by Lundberg and de Mar\'{e} (1980)

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Sensors and methods for weather-independent remote sensing with microwaves

    Get PDF
    Sensors and methods of radar and microwave radiometry which operate in the millimeter wave range are discussed. The properties of electromagnetic waves are discussed as well as the resolution capacity and measurement accuracy of sensor systems
    corecore