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ABSTRACT

Thls paper explores the potential for airborne remote sensing for atmospheric

sciences research. Passive and active techalques from the microwave to visible bands
are discussed. It is concluded that technology has progressed sufficiently in

several areas that the time Is right to develop and operate new remote sensing

instruments for use by the community of atmospheric scientlste as general purpose

tools. Promising candidates include Doppler radar a_d lidar, infrared short range
radiometry, and microwave radiometry.

I• INTRODUCTION

Aircraft have been used profitably In atmospheric sciences research for several

decades. The principal advantage of an airborne platform Is clearly Its mobility,
which allows it to sample the atmosphere in regioas In and near the weather and In

geographical regions around the globe. It has been traditional for researchers to

use aircraft to make very hlgh resolution, in sltu measurements of air motion,

temperature, moisture, cloud particle size distribution, liquid water, hydrometeor

phase, trace gases, and aerosols. In sltu measurements, while very precise, surf=-

from at least two significant problems. First, is the fact that measurements made

along a given aircraft flight t_ack sample a very small volume of the atmosphere.
For example, a particle spectrometer, flown through a cloud, will have a total a

sampl_ng volume of less than a cubic meter per kilometer of path length. There are

therefore significant concerns as to how representative such measurements are of
precipitation processes in other regions of a clou. _. Even small cumulus congestus
encompass a total volume well in excess f i0 m • Secondly, in sltu _robes are

adversely affected by Ic]ng and liquid water In clouds and may In certain

circumstances become inoperative.

The first of these problems has tended to , ; mitigated in part by the extensive
use of ground-based and satellite remote sensing techniques, which have provided
in_ormation on the larger scale structures of clouds and precipitation, while the
_Lrcraft have concentrated on the microphyslcal and smaller scale measurements.
?ontamtnation of in situ probes by the cloud environment remains a problem.
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There exist several important reasons for incorporating remote sensing tech-

niques to a greater degree on research aircraft. First, Is the great emphasis now

being placed on mesoscale meteorology as articulated in the documents prepared for a
national Stormscale Operational and Research Meteorology (STORM) program in the
United Sta_es. In order to conduct a true multi-scale investigation, that is, to

examine in a deftnttive way the scale interactions from the meso-alpha to meso-gamma

scales_ it is essential that instrumental coverage be extended to areas of the size
of one-third of the United States. The limlted numLer of research, land-based remote

sensors will dictate strongly that more remote sensing be added to research air:raft
for adequate three-dimensional observations of the meso-beta and meso-gamma scales.

In addition, the mesoscale programs of the future will place greater emphasis on

coastal regions, requiring extensive measurement capabilities over the oceans where

surface arrays of remote sensors are exceedingly difficult, if not impossible, to

deploy.

In a similar vein, it is expected that there will be new thrusts in global and

regional atmospheric chemistry and that combining chemistry with meteorologAcel meas-

urements will take on a greater importance than in the past. Global chemistry

measurement programs will require long-range flights over the open oceans. In these

flights it will be essential to define better the kinematic and thermodynamic prop-
erties of the atmosphere through the use of remote sensing. In regional studies

rela_ed to acl 4 rain, In situ microphysical and aqueous chemical measurements must be

augmented by information on the structure and phase of precipitation as _ell as on

the kinematic properties of clouds.

These scientific thrusts clearly point out the need for expanded use of remote

sensors on research aircraft. If the potential of airborne remote sensing can be

realized, it is possible to conceive of arrays of research aircraft used as highly

mobile beta and gamma scale networks, approximating closely the capabilities of the

more traditional, but fixed, surface research arrays.

2. STATUS

Appendix A provides a bibliography of papers describing remote sensing tech-

niques that could be deployed from aircraft platforms. Appendix B is a llst of

remote sensing instruments, available within NASA, which have been constructed and

tested to varying degrees. Neither appendix is exhaustive of the state of the art,
rather each is illustratlve of how much work has been accomplished in the field.

In light of the considerable history of ground-based remote sensing and of the
considerable research and development that has been conducted, one can legitlmately
ask why remote sensing has been 8o sparsely used in research aircraft to date. The ,_

reasons for this are many. Perhaps most slgnt_Icant is the fact that at the present
time airborne remote sensing remains in the developmental stage. Consequently,
remote sensing tools tend to exist within the doualn of specialists (scientists and
engineers) whose interests lie primarily with the development and/or demonstration of
observatlonal techniques rather than wit_ the interpretation of the data for atmos-
pheric research. This situation is similar to that which existed 15 years ago in the
fleld of Doppler radar _eteorolozy. Doppler radar hab now becoIe a widespread
research and operatlonal tool for meteorology partly because of major technologlcal
advances which took place in the late 1960's and early 1970's. More Important, hey-
ever, was the technology transfer that took place between the radar ueteorologis_8 of
the late 1960's and the broader comIunity of users. This technology transfer has

renulted in widespread acceptance of Doppler radar as a tool for ueteorolosists who
know little or nothing about radar. A similar technology transfer lust ease place if
other remote sensing techniques are to be effe_tlvely utiILged.

A second reason for the sparse use of remote sensing techniques is tha iLuple
fact that I_St reIote vensors have not dellvered all of the pot=ntial that has been
promised. The spatial resolutlon of passive techniquei has been lIIite_. For
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example, microwave radiometrlc techniques provide generally unacceptable resolution

in the vertical for profiling of temperature and humldlty. Aerosol backscatterlng

cross sections have not always been adequate for reliable coherent lldar measurements

at all altltude_ in the troposphere. Doppler radar use on aircraft has been slow to

develop because of uncertainties related to ground clutter contamination through

" antenna side lobes. The need for compensation for aircraft yaw, pitch, and roll adds

complexity and attendant cost to coherent radar or lldar measurements from the

airborne platform.

It is also true that many of the developmental remote sensing instruments have

not been packaged well for airborne use in that they are heavier, larger, and consume

more power than is desirable for many applications. Indeed, it is clear that smaller

aircraft, of the class of the NCAR King Air, will be llmtLed in their ability to

accommodate many remote sensing instruments. Because of this, larger aircraft such

as NASA's Convair 990, NOAA's P-3's, and high altitude aircraft such as the NASA U 2

o have been the platforms of cholce. The high costs of operating these aircraft haveb

served as impediments to many who would wish to use advanced remote sensing systems

for their airborne research. Aircraft have been used for testing these sensors but

_ often times their general purpose use on aircraft platforms has been overlooked. In

; addition, much remote sensing development has been undertaken for eventual use from
satellites.

±

t Despite these impediments, however, the future now is bright for airborne remote

sensing. There are many remote sensing techniques, both active and passive, which
can contribute substantially to the scientific challenges of the future. Short

range, rapid response measurements of temperature, wate_ vapor, liquid water, winds

and turbulence are all possible using infrared radiometry, microwave refractometry,

and continuous wave Doppler lldar veloclmetry. Pulsed Doppler radar systems will

make measurements of hydrometeor and wind structure in precipitation. Polarlmetrle

radar techniques will help to determine the three-dimenslonal structure of preclplta-

tlon phase and its evolution. Pulsed Doppler lldar methods are needed for measure-

ment of winds and turbulence in regions free of cloud and preclplt_tion. For meas-

urements of liquid water, research is now under way on microwave radiometrlc tech-

niques for measurement of the three-dimensional structure of the liquid water fields i
in clouds.

J

3. SOME PROMISING CANDIDATES i

3.1 Microwave Doppler Radar !

It is our view that the earliest significant scientific payoff will come from

airborne Doppler radar. Mueller avd Hildebrand (1983) describe the capabilities of

airborne Doppler radar for two- and three-dlmenslonal measurements of air motion in I

t precipitation. This work, a cooperative effort between NOAA and NCAR, has lllustra- i
, ted that properly process_,d airborne Doppler radar measurements differ only in small ;

detail from those made by jround-based systems and moreover are as physlcally plausl-

ble as are those obtained from the surface radars. Before the end of this decade, we I
should see improved Doppler radars on both of the NOAA P-3 aircraft, on the NCAR

- Electra, and nn the NCAR King Air. These radars should be designed with adaptability ]

to other aircraft in mind. In particular, there is a great need for down-looking [

•_ Doppler measurements from high altitude aircraft flying over convective storms, z!

, These vertically pointing measurements, when co_Ined with horlzontally scanned data I
from lower altitude aircraft, will permit accurate estimates of thL vertical fluxe_ I

of mass and moisture in mesoscale convective systems and in tropical cyclones
I

Aircraft platforms will dictate that some compromises in _ystem performance be

made. Wavelengths at X or K band will probably be used which will provide acceptable
spatial resolution but which will prohibit quantitative precipitation measurement in

heavy raln. Such effects are however mitigated in wrt by che mobillty of the plat-

form. The initial implementation on reseat :h aircraft will be single wavelength
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systems. More sophisticated systems are ]ikely to follow which will provide wave-

length and polarization diversity capabilities for more quantitative determination of

" precipitation phase and evolution.

;_ 3.2 Doppler Lidar

• Doppler lidar is also ready for deployment from aircraft. While pulsed systems

still require development, CW Doppler lldar can be effectively utilized now. Cannel
et al. (1983) describe a CW system which has been installed on the Royal Aircraft

Establishment (RAE) |{S-125 foz studies of wind shear. The system has proven to be

tellable, accurate, and easy to maintain. Keeler and Serafin (1983) have suggested

% that a scanning CW system, focused a few meters ahead of an aircraft can be used as a

substitute for mechanical three-dimensional gust probes such as that described by
Lenschow (1978). The feasibility of the lidar gust probe system is expected to be

_emonstrated further through test flights in the spring of 1984 in a collabcratlve
; effort between the British Royal Signals and Radar Establishment, the RAE, and NCAR.

Successful tests will lead to the design and development of a scanning research

system for the NCAR aircraft.

The great interest in "ind measurements from space as described by Huffaker

(1983) is resulting in substantial new development in pulsed CO2 systems for air

motion measurements. Bluecteln et al. (1983) have reported on comparisons between

-" wind field measurements obtained by airborne pulsed Doppler lldar and ground-based

= pulsed Doppler radar. Their results show good agreement between the radial velocity

fields but poor correlation in the derived eddy fields. Considerably more research

[ and development is necessary in order to make pulsed systems practical for general
purpose use. However, the potential for vector wlnd field determination in the clear

: troposphere is so important scientifically that chls work is certain to continue to
its suc:essful fruition.

3.3 Infrared Radiometrlc Measurement of /n-cloud Temperature

Great difficulties are enccdntered with present in situ probes for accurate tem-

, perature measurem_ncs within _louds because of dynamic heating and wetting effects.

Reverse flow housings have been designed to inertially separate air and cloud parti-

cles; howe_er, these are as yet questionably effective and generate additional prob-
lems because of flow turbulence around the sensor element. With proper design,
remote radiometric measurements can be obtained in the near-field of the aircraft

without suffering these deleterious effects.

Radiometric measurements of temperature in and out of clouds h_ve _een _de pre-
_iously in the 15 _m infrared caLDon-dloxide rotational band. Recently, Albrecht et

i al. (1979) have reported on a series of measurements using a moderately narrow band
! thermistor bolometer detector centered at 14.8 _. The effective free-air slmple

pat_ length was of the order of I00-200 meters at lower flight altltudes, larger
sized hydrometeors at nonequillbrtum temperatures within the sample volume ,=mused the
measured temperature t_ be weighted in an unknown fashion by precipitation, while
cloud particles caused _ignificant sample volume variations for measurements made in
clouds. Otner errors originate because of temperature variations within the radio-
meter itself as a result of its exposure to the variable temperature environment of
the aircraft at flight altitudes.

These problems at 15 _ wavelengths appear to be eliminated as a result of a
4.3 um radiometer by Ophir Corporation, Denver, Colorado, beln8 developed under NCAR
contract. At 4.3 _, sapphire optics can be used with negligible emission tempera-
ture error at all flight altitudes. A fast response sensitive lead selenide (PbSe)
detector c_u be used, which more than compensates for the lower radiance at 4.3 ,_m as

compared to 15 _m. The sample path leugth is such that two-thirds of the received
energy originates within the first two miters and almost all the energy received Is
from the first ten meters of sample path. Because few hydrometeors of precipitation _
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size will be p_esent in this restricted sat,pie voiume, errors originating from pre-

c_p!tation are negligible. A prototype 4.3 _±m radiometer has been flight tested from

NCAR's Queen Air research aircraft. The results confirmed that the remote radio-

metrlc-measured air temperature is independent of speed (dynamic heating effects) and

the presence of cloud (wetting_. Construction of the first radiometer for airborne

use is planned to occur early in 1984 with flight testing scheduled during

Se?tember/October of that year. Design accuracies of 0.2°C and a frequency response

of at least I0 Hz are expected to be achieved. The successful development of this

device will pave the way for a differential absorptlen technique, in the same

wavelength regime, for high frequency humidity measurements.

Two additional variations are worthy of note. First, through selection of dif-

ferent optical narrow-band filters, the radiometer can be shifted to near)y wave-

lengths which are either out-of-band or on the edge f the band. This provides a

means for sensing other parameters. For example, a :adlometer operated with a narrow

band filter centered on 3.7 _ will operate in an "atmospheric window" and can be

used for remote surface temperatur_ .u_;_re_nts (of sea surface, clouds, land sur-

faces, etc.). This variation is planned for development concurrently with the in-

cloud temperature radiometer. Similarly, for either lead s=lenlde or thermistor

bolometer detectors, it zs possible to "de-tune" the radiometer center wavelength to

the edge of the absorption band such that sample _ath lengths are greatly increased. i

This allows remote temperature measurements wh[ch can be weighted with respect to

range. With appropriate scanning in elev_clon or wavelength, radiometers can there-

fore be used to obtain temperature nrofiles above and below the aircraft flight mlti-

tude. Such airborne application would be useful for boundary layer and inversion

studies. Also, because th_ sampling range increases with decreasing air density,

this application wo,,Id be useful for studies of tr_popause folding at higher flight

altitudes. Thi_ concept has been used on NA';A aircraft.

i

3.4 _omo_raphlc Radiometrlc Measurement of Liquid Water in Clouds !

A measurement of the emission from a spattal atmospheric distribution of

particulates can be particularly useful for the detection and monitoring of param- _

eters such as pollutants or naturally occurring atmospheric distributions, e.g.,

liquid water content in clouds. If a large number of such measurements along a !

series of intersecting rays can be utilized, then it is possible to compute the dis- i

trJbutlon through the use of tomographie _=thematlcal Inve_'sion procedures. Such

procedures have been in use in geophysical exploration, in radio astronomy, and espe- _
clally in medicine for over a decade. The technique is applicable for optical or

microwave frequencies. Warner et al. (1984) describe a ground-based system. !
I

Jack Warner (NCAR, Boulder, Colorado, USA) and Sean Twomey (University of _
Arizona, Tucson, _rlzona, USA) are collaborating on the development o_ the to_o-

graphic technique using scanning microwave radiometers from aircraft for the remote

sensing of liquid ,,ater content in clouds. The aircraft radiometers would be mounted i

to subtend a fixed fore-aft angle such that multiple rays would be provided as the

aircraft flies beneath isolated, developing cumulus clouds. Simulativn_ and a field

test of ground-based scanning radiometers operating at a wavelength of near 1 cm

(K-band) have been carried out, with the result that it appears possible using the ; i

tomographic inversion technique to measure the two-dimension_l distribution of liquid !
water content in an isolated cloud to an accuracy of 0.l gm- with a spatial resolu-

tion of a few hundred meters. In principle, similar results should be obtainable !

from the aircraft configuration_ It should be noted that at the K-band wavelength, i
the presence of ice particlcs is nearly invisible because of a greatly reduced !

emissivity of ice as compared to liquid water. It is also important to note Chat the !
method is accurate for drop distribu_!ons without appreciable water content t _ irops

greater than 1 _ dlame_er. Field flight tests a_e planned for 1985. !
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3.5 Temperature and Humldlty Profilln_ ,,

While coherent ]Idar and radar wi.[1 provide accurate measurements of air motion

• In the clear air and in precipitation respectively, accurat,_ and high resolution

measurements of temperature and moi qture remain difficult problems. Radiometric i

:, measurements in the oxygen and water vapor hands such :_ described by llogg et al.

_ (1983) provide estimates of the profiles of moisture and temperature but with poor
reso[ution in the vertica]. However, these techniques may b, more useful from air-

craft than from fixed _urface locatloos _ea,qp, althot,_h vertical resolution will

not be improved, the mobile aircraft platform wlll permit measurements of the meso-

scale variability ot temperature and moisture in the horizontal with substantially

higher resolutiou in the horizontal than is available from satellites. The result

will be a set of measurements from satellite and alrcr_ft that complement one another

by prcvidlng both large aerial coverage and high horizontal resolution.

3.6 Incoherent Lidar

Pulsed incoherent iidar is also now suitable or aircraft use. Single wave-

length systems can be inexpensive but tend not to be quantitative with respect to

detalled propert|es of the aerosol or molecular backscatterlng medium. They do how-

ever provide important information on boundaries and structure. Single wavelength

lidar will therefore be very useful for examining boundary layer height, structure,

and evolution, and because of the airborne platform, the mesoscale variability of

"'- these properties can also be observed. In a similar vein, single wavelength lldar is

? suitable for making highly accurate measurements of cloud tops _nd cloud structure.

Differential absorption lidar is :,re costly but offers more information. Profiles

of gaseous constituents including _ater vapor should be possible in the troposphere.

4. THE NEXT STEPS i
J

There is little doubt that the atmospheric sciences community can use airborne i

remote sensing very profitably. Indeed, scientific headway in studies of mesoscale

systems and atmospheric chemistry will be hampered significantly u.less aircraft are '=

suitably equipped to duplicate, in part, the measurement capabilities of surface-

based networks. This paper, llke many others on this subject, has addressed the !

issue of potential, but promising candidates for airborne remote sensing have been

discussed for two decades. The challenge facing the atmospheric sciences community

now is to put these techniques to use effectively. There is no universal _ormula for

success, but the following ingredients are considered by the authors to be important.

• First, there ,nust be an established scientific need and that need should come

from the community of users, rather than from the instrume, _ syg' leveloper.

" Second, users must be corm_Itted tc the development process, wo "'_

cooperatively with the instrument developer. I:. this way it I,, ,_- ed :\

- what is developed will _. useful to the nonspeciallst.

i

• Third, the lngt:ument must be well engineered, that Is, acceptably ,._- ' use. .,

Considerable attention must therefore be pa:] to reliability, c_l[l, _, , -,

display, data recording, and data analysis, i
I

• Fourth, tf airborne remote sensing is to advance to its potential, the larger I
aircraft platforms available in various agencies must be made available for the l,

-_ community at large to use with as few strings attached as possible. _t
k

• Fifth, there must be a co_!tment by the agency or group, into whose custody I
these instruments are placed, to provide adequate funding for malntenance of the

hardware and for guaranteeing operational readiness•

i
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• Finally, ndequa_e feedback between scientific users and operators must take
place. This can be accomplished most effectively by establishing sc[enttfic
competence within t.e framework of the operational team.

" Within our community, we expect to se_ widespread use of airborne Doppler radar
in three to five years. Coherent CW ltdar may also be available in this time frame.

"0n

Short range rapid response temperature measurement may achieve operational status In
two to t_ree years. Airborne pulsed lidar and microwave radfor _tric techn£ques are
also clrtically needed end should be developed as re earch L_olj wlthtn five years.

e
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APPENDIX B
fl

NASA/Goddard Space Flight Center

Remote Sensing Instrument Inventory

This Appendix list a number of the remote sensing instruments that may be

available from the Goddard Space Flight Center. The information was provided to the

authors through the courtesy of David Atlas, Chief of Goddard's Laboratory for

Atmospheric Sciences. Details about these instruments can be obtained from
Joseph McGoogan at the Wallops Island Flight Facility.

INDEX/GLOSSARY

Catalog Number Acronym Instrument Name

1 MCR Multtspectral Cloud Radiometer
2 CTS Cloud Top Scanner

3 CLS Cloud Ltdar System
4 AMMS Advanced Microwave Moisture Soundec

5 BRFI Bidirectional Reflectance Field Instrument

6 LAPR II Linear Array Pushbroom Radiometer
7 Biometer

8 OSC-£ Ocean Color Scanner-I

9 HCH Heat Capacity Mapper
I0 MLA(Sim) Multispectral Linear Arcay Simulator !
II RMR Rain Mapping Radiometer
12 CZCS Coastal Zone Color Scanner

13 ALRS Airborne Laser Ranging System i
14 AMMR Aircraft Mult tchannel Microwave ,

Radiometer
15 LBMR L-Band Microwave Radiometer ,

16 S'..'I.R Short Wave Infrared Radiometer

17 HI,A Multtspectral Linear Array

L8 RLS Raman LIDAR System
!

19 O_E Ocean Color Experiment t
20 MLS Bendix Modular Multtband Scanner

21 NS001 Thematic Mapper Multispectral Scanner _
22 0-2 TMS U-2 Thematic Mapper Simulator

23 U-2 LAS U-2 Linear Array Scanner i

24 Hygrometer i25 AOL Airborne Oceanographic LIDAR .
26 AAFE ALT /_FE Radar Altimeter

27 SCR Surface Contour Radar i
28 ROWS Radar Ocean Wave Spectrometer I

i

29 ASAS Advanced Solid State Array Spectrometer i
30 PRT Precision Radiation Thermometer !

!

I
i
i
I

I
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