12,710 research outputs found
A visual feedback system for micromanipulation with stereoscopic microscope
A stereoscopic microscope is widely used in a micromanipulation such as to operate genes and to inspect integration circuits. As in these tasks the micromanipulation is handled and makes too heavy burden to operators, it is desirable to perform the micromanipulation automatically. In this paper, we propose a visual feedback system for micromanipulation with stereoscopic microscope. This system takes less time to control the manipulator by reducing searching area to detect an object </p
Multi Agent Micromanipulation System
In the area of biotechnology, a micromanipulation is widely used for such purposes as operating on genes and transferring biological materials into cells. For the some experiments, such as biochemical experiment, a large number of cells have to be manipulated in a short time. We have developed an automatic micromanipulation system under the stereoscopic microscope. Micromanipulation system carries out various processes, such as detection of the target, the detection of the needle head, and motor control. By sharing these processes with several computers, the micromanipulation can be performed at high speed. As a result, computer cooperation becomes very important. In this paper, we propose a multi agent micromanipulation system. At first, we developed a multi agent system, which performs image processing, motor control, and management of the micromanipulation processes. Secondarily, we proposed to operate computers cooperative. We use a computer as a single agent. And several computers are connected to a local area network. The multi agent micromanipulation system performed the micromanipulation at a realistic rate through cooperation of multi agents.</p
Development of a micromanipulation system with force sensing
This article provides in-depth knowledge about our undergoing effort to develop an open architecture micromanipulation system with force sensing capabilities. The major requirement to perform any micromanipulation task effectively is to ensure the controlled motion of actuators within nanometer accuracy with low overshoot even under the influence of disturbances. Moreover, to achieve high dexterity in manipulation, control of the interaction forces is required. In micromanipulation, control of interaction forces necessitates force sensing in milli-Newton range with nano-Newton resolution. In this paper, we present a position controller based on a discrete time sliding mode control architecture along with a disturbance observer. Experimental verifications for this controller are demonstrated for 100, 50 and 10 nanometer step inputs applied to PZT stages. Our results indicate that position tracking accuracies up to 10 nanometers, without any overshoot and low steady state error are achievable. Furthermore, the paper includes experimental verification of force sensing within nano-Newton resolution using a piezoresistive cantilever endeffector. Experimental results are compared to the theoretical estimates of the change in attractive forces as a function of decreasing distance and of the pull off force between a silicon tip and a glass surface, respectively. Good agreement among the experimental data and the theoretical estimates has been demonstrated
Function based control for bilateral systems in tele-micromanipulation
Design of a motion control system should take into
account (a) unconstrained motion performed without interaction
with environment or any other system, and (b) constrained
motion with system in contact with environment or other systems.
Control in both cases can be formulated in terms of maintaining
desired system configuration what makes essentially the same
structure for common tasks: trajectory tracking, interaction force
control, compliance control etc. The same design approach can be
used to formulate control in bilateral systems aimed to maintain
desired functional relations between human and environment
through master and slave motion systems. Implementation of
the methodology is currently being pursued with a custom built
Tele-micromanipulation setup and preliminary results concerning
force/position tracking and transparency between master and
slave are clearly demonstrated
Semi-autonomous scheme for pushing micro-objects
-In many microassembly applications, it is often
desirable to position and orient polygonal micro-objects lying on
a planar surface. Pushing micro-objects using point contact provides
more flexibility and less complexity compared to pick and
place operation. Due to the fact that in micro-world surface forces
are much more dominant than inertial forces and these forces
are distributed unevenly, pushing through the center of mass of
the micro-object will not yield a pure translational motion. In
order to translate a micro-object, the line of pushing should pass
through the center of friction. In this paper, a semi-autonomous
scheme based on hybrid vision/force feedback is proposed to push
microobjects with human assistance using a custom built telemicromanipulation
setup to achieve pure translational motion.
The pushing operation is divided into two concurrent processes:
In one process human operator who acts as an impedance
controller alters the velocity of the pusher while in contact with
the micro-object through scaled bilateral teleoperation with force
feedback. In the other process, the desired line of pushing for
the micro-object is determined continuously using visual feedback
procedures so that it always passes through the varying center of
friction. Experimental results are demonstrated to prove nanoNewton
range force sensing, scaled bilateral teleoperation with
force feedback and pushing microobjects
Optical Micromanipulation Techniques Combined with Microspectroscopic Methods
Předložená dizertační práce se zabývá kombinací optických mikromanipulací s mikrospektroskopickými metodami. Využili jsme laserovou pinzetu pro transport a třídění živých mikroorganismů, například jednobuněčných řas, či kvasinek. Ramanovskou spektroskopií jsme analyzovali chemické složení jednotlivých buněk a tyto informace jsme využili k automatické selekci buněk s vybranými vlastnostmi. Zkombinovali jsme pulsní amplitudově modulovanou fluorescenční mikrospektroskopii, optické mikromanipulace a jiné techniky ke zmapování stresové odpovědi opticky zachycených buněk při různých časech působení, vlnových délkách a intenzitách chytacího laseru. Vyrobili jsme různé typy mikrofluidních čipů a zkonstruovali jsme Ramanovu pinzetu pro třídění mikro-objektů, především živých buněk, v mikrofluidním prostředí.The subject of the presented Ph.D. thesis is a combination of optical micromanipulation and microspectroscopic methods. We used laser tweezers to transport and sort various living microorganisms, such as microalgal or yeast cells. We employed Raman microspectroscopy to analyze chemical composition of individual cells and we used the information about chemical composition to automatically select the cells of interest. We combined pulsed amplitude modulation fluorescence microspectroscopy, optical micromanipulation and other techniques to map the stress response of cells to various laser wavelengths, intensities and durations of optical trapping. We fabricated microfluidic chips of various designs and we constructed Raman-tweezers sorter of micro-objects such as living cells on a microfluidic platform.
Novel parameter estimation schemes in microsystems
This paper presents two novel estimation methods that are designed to enhance our ability of observing, positioning, and physically transforming the objects and/or biological structures in micromanipulation tasks. In order to effectively monitor and position the microobjects, an online calibration method with submicron precision via a recursive least square solution is presented. To provide the adequate information to manipulate the biological structures without damaging the cell or tissue during an injection, a nonlinear spring-mass-damper model is introduced and mechanical properties of a zebrafish embryo are obtained. These two methods are validated on a microassembly workstation and the results are evaluated quantitatively
Laser microdissection as a new approach to prefertilization genetic diagnosis
The genetic status of oocytes can be determined by polar body (PB) analysis. Following PB extraction, a genetic evaluation is performed. As each PB contains the complementary genetic material of the oocyte, PB analysis reveals information about its genetic status. Genetically altered oocytes may then be excluded from in vitro fertilization. The aim of our study was to evaluate laser microdissection as a tool for PB extraction purposes. Compared to the PB extraction with a sharp-ending pipette only, we could show that laser microdissection of the zona pellucida (laser zona drilling) with a UV-A laser and subsequent extraction with a blunt-ending pipette decreases the degeneration rate of oocytes. It is shown that laser pressure catapulting of extracted PB enables their contact-free transfer into tubes, thus decreasing the risk of contamination for further analysis. Copyright (C) 2001 S. Karger AG, Basel
Johnson-Kendall-Roberts theory applied to living cells
Johnson-Kendall-Roberts (JKR) theory is an accurate model for strong adhesion
energies of soft slightly deformable material. Little is known about the
validity of this theory on complex systems such as living cells. We have
addressed this problem using a depletion controlled cell adhesion and measured
the force necessary to separate the cells with a micropipette technique. We
show that the cytoskeleton can provide the cells with a 3D structure that is
sufficiently elastic and has a sufficiently low deformability for JKR theory to
be valid. When the cytoskeleton is disrupted, JKR theory is no longer
applicable
- …
