451,018 research outputs found
Bond graph based sensitivity and uncertainty analysis modelling for micro-scale multiphysics robust engineering design
Components within micro-scale engineering systems are often at the limits of commercial miniaturization and this can cause unexpected behavior and variation in performance. As such, modelling and analysis of system robustness plays an important role in product development. Here schematic bond graphs are used as a front end in a sensitivity analysis based strategy for modelling robustness in multiphysics micro-scale engineering systems. As an example, the analysis is applied to a behind-the-ear (BTE) hearing aid.
By using bond graphs to model power flow through components within different physical domains of the hearing aid, a set of differential equations to describe the system dynamics is collated. Based on these equations, sensitivity analysis calculations are used to approximately model the nature and the sources of output uncertainty during system operation. These calculations represent a robustness evaluation of the current hearing aid design and offer a means of identifying potential for improved designs of multiphysics systems by way of key parameter identification
Gas dynamics at the micro-scale: A review of progress in hydrodynamic modelling
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.We review some recent developments in the modelling of non-equilibrium (rarefied) gas flows at the micro- and nano-scale using extended hydrodynamic models. Following a brief exposition of the challenges that non-equilibrium poses in micro- and nano-scale gas flows, we outline the field of extended
hydrodynamics, describing the effective abandonment of Burnett-type models in favour of high-order regularised moment equations. We then review the boundary conditions required if the conventional Navier-Stokes-Fourier (NSF) fluid dynamic model is applied at the micro scale, describing how 2nd-order Maxwelltype conditions can be used to compensate for some of the non-equilibrium flow behaviour near solid surfaces. While extended hydrodynamics is not yet widely-used for real flow problems because of its
inherent complexity, we finish with an outline of recent ‘phenomenological extended hydrodynamics’ (PEH) techniques — essentially the NSF equations scaled to incorporate non-equilibrium behaviour close to solid surfaces — which offer promise as engineering models.This work is funded in the UK by the Engineering and Physical Sciences Research Council through grants EP/F002467/1, EP/D07455X/1, EP/D007488/1 and EP/F028865/1
Multi-scale simulation of the nano-metric cutting process
Molecular dynamics (MD) simulation and the finite element (FE) method are two popular numerical techniques for the simulation of machining processes. The two methods have their own strengths and limitations. MD simulation can cover the phenomena occurring at nano-metric scale but is limited by the computational cost and capacity, whilst the FE method is suitable for modelling meso- to macro-scale machining and for simulating macro-parameters, such as the temperature in a cutting zone, the stress/strain distribution and cutting forces, etc. With the successful application of multi-scale simulations in many research fields, the application of simulation to the machining processes is emerging, particularly in relation to machined surface generation and integrity formation, i.e. the machined surface roughness, residual stress, micro-hardness, microstructure and fatigue. Based on the quasi-continuum (QC) method, the multi-scale simulation of nano-metric cutting has been proposed. Cutting simulations are performed on single-crystal aluminium to investigate the chip formation, generation and propagation of the material dislocation during the cutting process. In addition, the effect of the tool rake angle on the cutting force and internal stress under the workpiece surface is investigated: The cutting force and internal stress in the workpiece material decrease with the increase of the rake angle. Finally, to ease multi-scale modelling and its simulation steps and to increase their speed, a computationally efficient MATLAB-based programme has been developed, which facilitates the geometrical modelling of cutting, the simulation conditions, the implementation of simulation and the analysis of results within a unified integrated virtual-simulation environment
Simulating disease transmission dynamics at a multi-scale level
We present a model of the global spread of a generic human infectious disease using a Monte Carlo micro-simulation with large-scale parallel-processing. This prototype has been constructed and tested on a model of the entire population of the British Isles. Typical results are presented. A microsimulation of this order of magnitude of population simulation has not been previously attained. Further, an efficiency assessment of processor usage indicates that extension to the global scale is feasible. We conclude that the flexible approach outlined provides the framework for a virtual laboratory capable of supporting public health policy making at a variety of spatial scales.high-performance computing; global modelling; disease transmission
Computational uncertainty in hybrid atomistic-continuum frameworks
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Over the past decade micro and nanofluidics emerged as vital tools in the ongoing drive towards the development of nano-scale analysis and manufacturing systems. Accurate numerical modelling of the phenomena involved at these scales is ssential in order to speed up the industrial design process for nanotechnology. However a parameter often ignored in hybrid simulations is the uncertainty level introduced in the numerical modelling of phenomena taking place at micro and nanoscales. The main interest of the present study is the propagation of the inherent atomistic fluctuations to the continuum solver in the case of multiscale modelling and hybrid solvers
Discrete modelling of capillary mechanisms in multi-phase granular media
A numerical study of multi-phase granular materials based upon
micro-mechanical modelling is proposed. Discrete element simulations are used
to investigate capillary induced effects on the friction properties of a
granular assembly in the pendular regime. Capillary forces are described at the
local scale through the Young-Laplace equation and are superimposed to the
standard dry particle interaction usually well simulated through an
elastic-plastic relationship. Both effects of the pressure difference between
liquid and gas phases and of the surface tension at the interface are
integrated into the interaction model. Hydraulic hysteresis is accounted for
based on the possible mechanism of formation and breakage of capillary menisci
at contacts. In order to upscale the interparticular model, triaxial loading
paths are simulated on a granular assembly and the results interpreted through
the Mohr-Coulomb criterion. The micro-mechanical approach is validated with a
capillary cohesion induced at the macroscopic scale. It is shown that
interparticular menisci contribute to the soil resistance by increasing normal
forces at contacts. In addition, more than the capillary pressure level or the
degree of saturation, our findings highlight the importance of the density
number of liquid bonds on the overall behaviour of the material
Assessment of highly distributed power systems using an integrated simulation approach
In a highly distributed power system (HDPS), micro renewable and low carbon technologies would make a significant contribution to the electricity supply. Further, controllable devices such as micro combined heat and power (CHP) could be used to assist in maintaining stability in addition to simply providing heat and power to dwellings. To analyse the behaviour of such a system requires the modelling of both the electrical distribution system and the coupled microgeneration devices in a realistic context. In this paper a pragmatic approach to HDPS modelling is presented: microgeneration devices are simulated using a building simulation tool to generate time-varying power output profiles, which are then replicated and processed statistically so that they can be used as boundary conditions for a load flow simulation; this is used to explore security issues such as under and over voltage, branch thermal overloading, and reverse power flow. Simulations of a section of real network are presented, featuring different penetrations of micro-renewables and micro-CHP within the ranges that are believed to be realistically possible by 2050. This analysis indicates that well-designed suburban networks are likely to be able to accommodate such levels of domestic-scale generation without problems emerging such as overloads or degradation to the quality of supply
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales
This contribution presents a two-scale formulation devised to simulate failure in materials with het- erogeneous micro-structure. The mechanical model accounts for the activation of cohesive cracks in the micro-scale domain. The evolution/propagation of cohesive micro-cracks can induce material instability at the macro-scale level. Then, a cohesive crack is activated in the macro-scale model which considers, in a homogenized sense, the constitutive response of the intricate failure mode taking place in the smaller length scale.The two-scale model is based on the concept of Representative Volume Element (RVE). It is designed following an axiomatic variational structure. Two hypotheses are introduced in order to build the foundations of the entire two-scale theory, namely: (i) a mechanism for transferring kinematical information from macro- to-micro scale along with the concept of “Kinematical Admissibility”, relating both primal descriptions, and (ii) a Multiscale Variational Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences of the variational statement of the problem.The present multiscale technique is a generalization of a previous model proposed by the authors and could be viewed as an application of a general framework recently proposed by the authors. The main novelty in this article lies on the fact that failure modes in the micro-structure now involve a set of multiple cohesive cracks, connected or disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Tortuosity is a topic of decisive importance in the modelling of material degradation due to crack propagation. Following the present multiscale modelling approach, the tortuosity effect is introduced in order to satisfy the “Kinematical Admissibility” concept, when the macro-scale kinematics is transferred into the micro-scale domain. There- fore, it has a direct consequence in the homogenized mechanical response, in the sense that the proposed scale transition method (including the tortuosity effect) retrieves the correct post-critical response.Coupled (macro-micro) numerical examples are presented showing the potentialities of the model to sim- ulate complex and realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also presented
- …
