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ABSTRACT: We present a model of the global spread of a generic human infectious disease using a 

Monte Carlo micro-simulation with large-scale parallel-processing. This prototype has been constructed 

and tested on a model of the entire population of the British Isles. Typical results are presented. A 
microsimulation of this order of magnitude of population simulation has not been previously attained. 

Further, an efficiency assessment of processor usage indicates that extension to the global scale is 

feasible. We conclude that the flexible approach outlined provides the framework for a virtual laboratory 
capable of supporting public health policy making at a variety of spatial scales. 
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INTRODUCTION 

 
Global disease 

In recent years the focus of medicine in the 

developed world has been on chronic diseases 
related to behaviour or local physical 

environment, while the major causes of death in 

developing countries, however, remain infectious 
diseases (Morens et al., 2004). This rift in the 

global focus is counter-balanced by a fear of the 

emergence or re-emergence of novel infectious 

diseases and of the introduction of infectious 
diseases into regions in which immunity is low or 

non-existent. The current worry of a within-

species strain of avian influenza is typical of the 
need to understand the patterns of global 

diseases, their emergence, spread (Galvani and 

May, 2005; Lloyd-Smith et al., 2005) and the 
mechanisms of transmission (Sattenspiel and 

Herring, 2003), and by those means also the 

potential value of alternative interventions 
(Chatterjee, 2005; Ferguson et al., 2005; Halloran 

and Longini, 2006; Longini et al., 2005). While 

some of the public fear of potential new global 
epidemics generated by news headlines is perhaps 

unfounded, the expert concern about between-

species transmission is real, founded and 

consequential (Tran et al. 2004). The HIV-AIDS 
pandemic is an example for a contact-transmitted 

disease, while sudden acute respiratory syndrome 

(SARS) is an example of an air-borne disease, 
both diseases having made a major impact on the 

public horizon. 

  
Human infectious diseases are defined here as 

those diseases in which most cases are contracted 

as a result of contact with an already infected 
person. The actual mechanism of transmission 

between humans varies between diseases 

(Anderson and May, 1991). Such mechanisms 

include: physical contact, sexual contact, airborne, 
waterborne, foodborne or vector-borne. These 

mechanisms are some of the most determining 

factors in understanding and modelling 
transmission. Specifically, infectious diseases 

transmitted through physical contact are wholly 

dependent on human behaviour, while vector-
borne diseases require an understanding of life 

cycle and natural history of the vector (Hoshen 

and Morse, 2004). Waterborne and foodborne 
diseases (such as cholera) are usually modifiable 

in practice by improved hygiene and sanitation. In 

contrast, airborne diseases tend to be dependent 
solely upon close physical proximity, with 

transmission typically dependent upon human 

density, rather than upon „risky‟ behaviours. 
 

In the following we shall, for simplicity, focus on 

modelling airborne disease, although the approach 

outlined allows for more complex processes to be 
modelled. 

 

Simulation approaches 
Due to the practical and ethical difficulties of 

conducting large scale experimental research in 

infectious diseases, the modelling of transmission 
dynamics using analytical and computational 

simulations is both attractive and necessary. 

Analytical solutions are elegant and general and 
are widely used (Anderson and May, 1991). They 

allow the generalisation of results to different 

diseases under different conditions, through the 
exchange of parameter values or interaction 

elements. They may allow the extension of the 

model to large populations or large areas. They 

can typically serve to establish conditions for a 
steady-state solution of the prevalence and 

incidence of the disease, the increase in infection 

rate at a single location, or the spread of disease 
through an isotropic homogenous surrounding. 

While such a model may be conceived for a 

disease with limited stage dependence based on a 
homogeneous background, there are as yet no 

analytical solutions for the spatial and temporal 

spread of disease on an inhomogeneous plane. An 
analytical model allowing for individual stochastic 

variation seems to be unattainable. One solution 

to this shortcoming is the use of computer 

simulations. 
 

Simulations allow the modeller to create a reduced 

representation of the complexities of reality, while 
leaving in place aspects deemed relevant, and to 

test their relevance by successive exclusions of 

model sections. Input data to the simulation may 
be based on observed data or on a limited 
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characteristic representation. Most biological 

models consist of some measurable parameters 

which are determined by empirical data (Ferguson 

et al., 2005). The simulation outputs will typically 
be expressed in terms of data with both spatial 

and  temporal dimensions. While the temporal 

aspect is inherent to transmission models, a 
spatial aspect is important for models which 

represent either the spread of new diseases or 

else spatial variation due to spatially-expressed 
local conditions. The ability to simulate in silico 

the progression of a disease thus forms the basis 

for a virtual laboratory, which replaces the natural 
laboratory of chronic diseases. This virtual 

laboratory allows the evaluation of interventions 

to be tested, by assessing their impacts upon 

infection rates.  
 

In simulating disease there has been a tendency 

to choose deterministic models in which 
individuals are bound to become infected within a 

set time (Anderson and May, 1991). More recent 

elaborations of these models describes the 
probabilistic flow of individuals from one status to 

another (e.g. Ferguson et al. 2005). Such models, 

unless containing an elaborate lag structure, 
however, often neglect a proper representation of 

the time-course and allow individuals to develop 

an infectious status faster than biologically 

feasible. A more valid method is to create 
separate “human” objects, followed individually, 

with dynamics that approximate those of actual 

humans (Chen and Bokka, 2005).  By dynamics 
we refer here to the ability of the in silico humans 

to move within the virtual world and interact with 

other virtual objects and with the process of 
disease. These virtual objects could include not 

only disease status but also individual 

characteristics, which may range from age and 
gender to genetic traits. As may be expected, this 

method will in general carry the computational 

cost of a large population structure in terms of 
both time and memory. In particular, to represent 

the behaviour of the human system at the early 

stages of an outbreak the size of the virtual 

population must be of the order of magnitude of 
the real population.  Perhaps the closest work in 

this field to our own is that of Ferguson et al. 

(2005, 2006) and Longini et al. (2005), both of 
which focus on avian influenza.  Both are 

experimenting with large scale simulations, and 

have conflicting predictions of the potential risk 
associated with an outbreak. However, neither is 

targeting the global simulation of disease spread. 

 
Due to the stochastic aspect of infection patterns, 

only this kind of dynamic microsimulation model 

will be able to simulate the full set of population 

processes required. Unfortunately, to fully 
generate the probability distribution will, in 

general, require many runs and huge memory and 

data resources. The additional complication of 
spatial transmission makes such models too 

complex for single processor machines. As a 

result, until now such models either compromised 
their geographic dynamic aspect, and simulated 

discrete individual locations, or else simulated 

only relatively small populations, either by limiting 

themselves to small countries (such as Sweden – 

c.f. Holm et al., undated) or by scaling the 

population. The innovative use of parallel-
processing techniques introduced in this paper 

allows for the simulation of the entire macroscopic 

population. 
 

Development of hardware 

Modern computing facilities, based on parallel 
computing, enable user access to very large scale 

processing and memory resources many 

thousands of times greater than that available on 
a single PC.  These facilities are typically clusters 

of low cost PCs which may easily be supplemented 

modularly, or else may be time-shared using 

inactive machines. Suitable software packages are 
freely available to enable linking machines. Large 

programs which exploit many hundreds of 

processors may thus be run interactively, allowing 
rapid evaluation of results and comparison of 

various parameters settings. 

 
High performance computing (HPC) based on 

parallel-processors cuts costs and provides access 

to groups which would otherwise not have the 
facilities. Parallel processing has been used for 

years in military and large-scale-management 

systems, in physics and chemistry academic 

research and various other fields. In biology, 
utilisation is sparse, and mainly focussed in 

bioinformatics. Social science simulations seem to 

not have taken this path yet. The Virtual 
Population Laboratory at the University of 

Liverpool seeks to take advantage of the 

availability of the local HPC facilities and to use 
these resources to perform micro-simulations of 

disease patterns on a multiprocessor computer 

system, in order to develop operational disease 
forecasts. 

 

   
MATERIALS AND METHODS 

 

In the work reported here we have simulated the 

spread of a contagious disease over the UK and 
the Republic of Ireland. We have used this 

simulation to evaluate the impact of some basic 

intervention strategies such as the closure of 
schools, which otherwise allow large-scale inter-

household transmission between school-children. 

The primary purpose of the example presented, 
however, is simply to demonstrate the feasibility 

of micro-simulating large (tens of millions) 

populations. 
 

Hardware and packages 

The computing facility at the HPC centre at the 

Department of Physics, University of Liverpool has 
940 nodes, each of which is a single core 3.06 

gigahertz DELL PowerEdge 650 server PC, with 

1gigabyte of Random Access Memory. This 
computer cluster, known as MAP2, has an 

effective performance of 1.2 terraflops.  Thirty 

seven nodes were allocated to the present pilot 
project. In such a computer cluster, inter-

processor communications can impose a 



HOSHEN ET AL.     Simulating disease transmission dynamics at a multi-scale level            28 

significant communications overhead.  The switch 

fabric used in MAP2 is Gbit Ethernet linked into a 

Force 10 E600 fully non-blocking switch (with no 

oversubscription) directly connected to each 
processing node. The hardware interface was 

provided by a front-end server remotely accessed 

using RedHat Linux version 9.0. Parallel-
processing was enabled using message-passing 
interface protocol (MPI , implemented by MPICH 

(Gropp et al., 2006). Programming was in C/C++ 

as implemented by MPICH, with the code compiled 
under mpiCC and gcc. 

  

Data structure 
For the simulation of the UK population we utilised 

a subgroup of a global dataset we previously 

constructed. The data consist of a global 

population density map fitted to a Cartesian grid 
format, and are taken from Gridded Population of 

the World (GPW) (CIESIN/CIAT, 2005). The 

resolution of the GPW is 0.25% or approximately 
27 km by 27 km at the equator.  This dataset was 

divided into countries using ArcGIS 9 and the 

supplied country boundary map. The total 
population within each grid cell was then 

subdivided by age-group and sex using country-

specific age-sex structures provided by United 
Nations (2005).  The resulting grid-based 

populations, disaggregated by age and sex, are 

adequate for the proof-of-concept model reported 
here.  An obvious future refinement would be to 

use more detailed maps and census data where 

possible, although inter-country differences would 

necessitate additional work on data harmonization 
before the result could be used as the input to a 

global model.  

 
The gridded population outlined above gives us a 

global structure of virtual “towns” (populated grid 

cells, each of approximately 27 x 27 km, 
depending upon location relative to the equator). 

These towns are further subdivided into grids of 

1000 by 1000 buildings or “houses”, each sized 
approximately 27 m by 27 m. For each town we 

also created classrooms or “schools” (number of 

schools = 1/30 of the number of children< 15 

years), workplaces (number of workplaces = 1/6 
of the total adult population) and homes (number 

of homes = 1/3 of adult population).  These three 

groups (houses, workplaces, homes) are placed at 
random in the grid and may overlap. Not all 

locations need be occupied and many areas are 

uninhabitable (sea for instance).  To provide a 
simple but functional model of the British Isles, 

the choice of house size, along with the definition 

of schools, workplaces and homes, were fixed ad 
hoc.  In a fully operational model the size of each 

element could be altered to better reflect the 

known demographic / geographic reality, although 
for running a global model using currently 

available technology we would not recommend 

using a spatial grid with a size below that of a 

standard room (approximately 3m x 3m).  
 

Having created a spatial framework, each towns is 

populated by creating virtual “humans”, objects 
(agents) possessing day and night locations, 

personal schedules (at this time only time of 

starting and ending work), age, sex and disease 

status. The total population and the age-sex 

structure of each town‟s population is already 
known.  These adults and children are randomly 

allocated to homes within that town (i.e. to 

„houses‟ designated as being available for 
occupation). Adults and children in each home are 

then also randomly allocated to, respectively, 

workplaces and schools within the town, a small 
proportion being randomly allocated to a 

workplace or school in an adjacent town. Each 

individual is also assigned a disease status from 
one of a sequence of possible states: susceptible, 

infected, latent (non-infectious), infectious and 

immune. The lengths of the latent and immune 

stages are variable and can be modified by 
disease type, as can the infection and clearance 

rates.  In a typical model run the vast majority of 

individuals are assigned an initial disease status of 
susceptible, with only a few individuals, in a few 

selected towns, being randomly allocated the 

disease status of infected. 
  

Because a full model for a large land mass is 

typically beyond the capacity of a single 
processor, the total surface area is subdivided into 

“regions” each controlled by a single processor. 

For simplicity the mesh of houses towns and 

regions is currently a Cartesian grid, but there 
exists no intrinsic computational reason that this 

geometry could not be refined (as is usual within 

finite element analysis) to further optimize the 
performance of the model. Adjacent processors 

overlap by two rows of towns, which are 

duplicated on each. This is a computational 
artefact to allow transfer across region 

boundaries, with each inner row belonging to the 

self region, and the outer row being attributed 
principally to the remote region.  This is illustrated 

in Figure 1, in which the cells represent „towns‟ 

and the numbers within each cell represent the 
controlling processor. Regions are denoted by a 

thicker borderline.  The shaded cells (towns) are 

those which are mirrored in adjacent processors. 

 
 

1 1 1 1 1 1 2 2 2 2 2 

1 1 1 1 1 1 2 2 2 2 2 

1 1 1 1 1 1 2 2 2 2 2 

1 1 1 1 1 1 2 2 2 2 2 
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3 3 3 3 3 3 4 4 4 4 4 

3 3 3 3 3 3 4 4 4 4 4 

3 3 3 3 3 3 4 4 4 4 4 

3 3 3 3 3 3 4 4 4 4 4 

3 3 3 3 3 3 4 4 4 4 4 

Figure 1  Example of the grid structure of 
regions, towns and overlaps 

 
 

Algorithms 

 

Population dynamics 
The time evolution of the system is modelled in 

time or clock steps. Our investigation used a clock 

step representing 15 minutes, or 1/96 of a day. 
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Further refinements of the system allowing for 

more detailed simulation of human behaviour 

could use a faster clock speed. Currently at each 

clock step the following processes occur.  
 

The first process takes place in each town 

independently. People move from night to day 
location at the start of their scheduled day, and 

vice versa at its end. In the case of quarantine or 

curfew, part of the movement may be limited. For 
example, schools may be closed, in which case 

children remain in their homes (night location) 

during the day.  
 

A second tier process is the movement of 

population between adjacent towns. This may be 

of two kinds: daily commuters who work in one 
town and live in the next, corresponding to 

suburban homes; and migrants who move away 

for a sustained period, and as such may be 
treated as residents at their new location.  In the 

commuting case, both local home and remote 

workplace are stored for the individual.  At the 
end of each time step the population of each town 

located on the border of two regions is copied 

across to its mirror image in the adjacent region. 
 

A third tier process is long-distance movement, 

defined as movement to a non-adjacent town. In 

the present setting this movement may be either 
within a region or between regions. In this process 

there is no memory of initial location and the new 

member person is attributed a new home and 
workplace. This is clearly artificial and further 

work would allow for the same person to return 

home after an extended long distance trip.  Unlike 
the first and second tier processes above, long-

distance movement is only implemented once per 

day. 
 

Rates for commuting and migrations are 

proportional to the size of the remote town (which 
prevents short term net population flux) and are 

controlled by a parameter which reflects local 

conditions (such as socioeconomic status).  These 

parameters may be replaced by data on travel 
where available. This process would render the 

model more accurate, but would not otherwise 

affect the functionality of the model provided in 
this paper. 

 

Disease dynamics 
The starting point for the model is the introduction 

of one or more cases of a disease into the 

population. At each subsequent time step the 
following procedure is followed.  

 

1. The number of infectious people in each 

house is counted. 
 

2. The entire population list is traversed. For 

each person a new infection state is 
evaluated. The per-step probability for an 

uninfected person to become infected by a 

single infected person is designated α. 
Assuming infection by different infectious 

people being independent, the probability 

of being infected by n people in a house is 

calculated by the joint probability of not 

being infected by any of them. Thus a 

susceptible person may become infected 
(latent) if residing in the same house with 

n infectious persons with the probability 1-

(1-α)n. Latent patients progress one stage 
towards infectious status, with the last 

stage representing their becoming 

infectious. Infectious patients become not 
infectious and immune with clearance 

probability β, whilst immune persons make 

one step towards becoming susceptible, 
with the last step being susceptibility. An 

implementation of a non-exponential 

distribution of the duration of infection may 

be introduced when applicable.  
 

3. The number of infectious persons is 

summed for each town, for each region 
(processor) and globally. As individual 

move between towns or regions, their 

individual disease status is transferred with 
them.  

 

Evaluation of output 
In this paper we evaluate two issues: the 

feasibility of the model structure for larger scale 

models; and ways of splitting the total 

investigation area into regions. To fulfil these twin 
goals we ran the program using differing 

configurations of processors and differing methods 

of grouping towns into regions.  The total number 
of processors used ranged from 4 to 36.  Two 

alternative methods were used to group the grid 

cells (towns) required to represent the British 
Isles into regions.  The first involved grouping 

towns into lateral slices, the second involved 

grouping towns longitudinally and latitudinally. 
The subdivisions were geared to test the 

scalability of the program, the limitations 

regarding numbers of processors, the minimum 
time for a run and the use of alternative processor 

architectures to reduce data-swapping. For this 

testing we used either a 24 by 24 grid subdivided 

as described in Table 1, or a 36 by 36 grid 
subdivided as described in Table 2.  In both tables 

the first column reports the total number of 

processors used in each configuration, whilst the 
second (third) column gives the number of towns 

that each processor controls in the x (y) direction.  

In all cases the model was run for 30 virtual days 
and the real world time was monitored. 

 

Spatially, the grids share a common origin to the 
North West of England.  Hence the 24 x 24 grid 

covers most of Ireland, Western Scotland and 

parts of Wales (population ~5 million); whilst the 

36 x 36 grid covers Scotland, Ireland, Wales and 
northern England, including Manchester, Leeds 

and Birmingham (population ~20 million).  To 

further test model scalability, a final set of model 
runs involved a 48 x 48 grid covering the entire 

British Isles with the exception of the Kent 

lowlands (total population ~70 million). 
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Table 1 Alternative 24 x 24 grid configurations 

 Shape of region  

Total 
regions  

(processors) 

Towns 
along  

X-length 

Towns 
along 

Y-length 

Simulation 
Time 

(seconds) 

  1 24 24 921 

  2 12 24 878 

  2 24 12 835 

  3 24   8 815 

  4 24   6 826 

  4 12 12 791 

  4   6 24 722 

  6 24   4 595 

  8 24   3 460 

12 24   2 356 

24   8   3 444 

24   6   4 427 

24 12   2 359 

24 24   1 281 

24   1 24 211 

36   8   2 345 

36   4   4 328 

36   2   8 296 

 

 

Table 2: Alternative 36 x 36 grid configurations 

 Shape of region 

Total 
regions 

(processors) 

Towns  
along 

X-length 

Towns  
along 

Y-length 

  4 18 18 

  9 12 12 
36   1 36 

36   3 12 

36   2 18 
27   4 12 

18   6 12 

12   9 12 

 
 

RESULTS 

 
Time course 

One typical  time  course  for  the  development is 

presented here (Figure 2). It represents the 
number of cases of an airborne respiratory 

disease, after the introduction of a single 

infectious case in the English Midlands. The 

latency was set to 3 days, as was the post-
clearance immunity (though larger times showed 

no significant difference).  One hundredth of 

adults commuted between towns daily, and there 
were no long distance movements. The rate of 

infection of a susceptible person when within the 

house of an infectious person was 0.9. The red 
line represents the number of cases without public 

health intervention, and the black line the number 

when a policy of closed schools is implemented. 
 

Statistics 

The incorporation of the stochastic elements of 
disease transmission requires multiple runs. The 

results presented  in  Figure 3  display  the  mean,  
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Figure 2 A typical time course for disease spread 

(origin = Midlands) 

 

 

 
Figure 3 Time course for 20 runs, assuming 1% 
of adults commute daily and schools are kept 

open 

 

 
 

median and first and third quartiles.  Because the 
data are not normally distributed this 

representation is preferable to the use of the 

standard deviation or standard error. We note that 
an important feature of this model is that a 

frequency distribution is a natural output of the 

model. 
 

Spatial patterns 

The spread of the infected cases among the 
general population is fairly isotropic. The largest 

numbers are, as expected, in the metropolitan 

areas, which afterwards serve as sources for 

subsequent transmission. This is because the high 
density regions have a higher commuter in-

migration rate, there are more people to be 

infected within a populous town and there are 
more people to exit the town carrying the disease. 

In Figure 4 we present three snapshots of a series 

of 30 daily pictures of the distribution of a rapidly 
spreading disease. 

 

Speed and numbers of nodes 
The  practicality  of  such  a  model  relies  on  the 
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Figure 4 Spatial distribution of cases after 3, 19 and 25 days for a highly infectious disease, allowing for 

long distance transmission. The size of the dot represents the number of cases at the grid point.   
Disease outbreak was seeded randomly in three initial centres. 

 

speed required to perform a run. The typical run 
times for the 48 x 48 grid model covering almost 

the entire British Isles required about 100s/run 

using 36 nodes (processors). Assuming that 100 
runs are performed to obtain a useful distribution 

this means an effective run-time of ~104s (3hrs) 

is required to simulate the daily commuting, 

migration and disease spread behaviour of a 
population of ~70 million over a virtual time-

period of 30 days (2880 time steps, each 

representing 15 minutes of elapsed time).  
However, a complex interaction exists between 

regional topology, the number of processors 

involved in the simulation and total execution 
time.  This is discussed further below. 

 

 
DISCUSSION 

 

Model validity and future refinements 

Despite the simplicity of our current „proof-of-
concept‟ model, some of the results generated 

already match well-known reports. Our model is 

able to create a representation of nationwide 
transmission (Figure 4). This spread does not 

occur in all cases, nor in all runs.  In fact, the 

probability of self-containment of the disease 
decreases with the number of persons already 

infectious, in line with expectation (Mills et al., 

2006).  Closure of schools, as depicted in Figure 
2, has also been shown elsewhere to be an 

effective means for limiting transmission 

(Heymann et al., 2004; Monto, 2006), although 
more so in rural situations, as urban children tend 

to fraternise in extra-school settings. Leisure 

activity has yet to be implemented in our model; if 

it had been we would expect our results to reflect 
this additional observation. 

 

Additional improvements planned for the future 
include enhanced modelling of variable person 

mobility tendencies, which should peak at around 

middle age, with elderly persons moving much 
more infrequently. Diurnal movements will also be 

modified to allow for visiting additional places and 

at additional times. At the same time transport 
modelling will introduced to allow for en route 

infection, for example in buses, trains and aircraft 

(Brockmann et al., 2006; Hufnagel et al., 2004). 
Similarly, the model will be revised to implement  

disease-induced absenteeism from work. 

 
Model scalability 

The principal value of our model‟s structure is its 

modularity and conceptual simplicity, allowing the 

model to be scaled up, in principle, to a global 
model.   In such scaling up a primary constraint 

on model execution time is the region with 

maximal population.  The reason for this is that, in 
our model structure, there is a pause at the end of 

each time step to allow the swapping of 

information between regions, principally the 
mirroring of towns located on a regional border to 

the adjacent regional processor.  As a result the 

processor dealing with the region containing the 
highest population, and which therefore takes the 

longest to complete its computational task, is the 

one which will dictate the pace of the simulation.  

This is illustrated by results produced using the 36 
by 36 grid (Figure 5a).  As the number of 

processors increases, the maximal population of 

each region falls, thereby reducing the overall 
simulation time.  This suggests that scaling the 

model from a national (British Isles) to global 

scale will simply require more processors. 
 

However, the story is not quite that simple.  The 

mirroring process has associated communication 
overheads, with the overhead being proportional 

to the size of the population that has to be 

mirrored.   When sub-dividing a less densely 
populated region across multiple processors, the 

gains in computation power more than out-weigh 

the slight increase in communications overhead 

entailed.  On the other hand, when sub-dividing a 
densely populated region (e.g. London), the 

increase in communications overhead, with far 

greater volumes of population having to be 
mirrored between regions, can potentially off-set 

any gain in computing power.  This is the cause of 

the diminishing returns shown at work in Figure 
5b, based upon results from model runs using a 

24 x 24 grid.  Communication overheads are also 

affected by the arrangement of towns within a 
region into rows and columns.  This is 

demonstrated visually in Figure 5b where, for the  
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MPI efficiency
36 by 36 grid: Time by number of nodes
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(a) 36 x 36 grid 

 
 

(b) 24x24 grid 

 

Figure 5 Changes in MPI usage efficiency in response to grid size and processor nodes 
 

 

same number of processors, multiple points are 
plotted, indicating the range of run times that can 

arise depending upon the precise arrangement of 

towns within regions. (The specific regional 
configurations associated with each run time are 

shown in Table 1.) 

 

Several lessons can be drawn from Figure 5.  
First, provided region size is large enough to allow 

the modelling of major metropolitan areas on one 

processor, communication overheads do not play 
a limiting factor in model run times.  Rather, 

scaling the model up from national to global 

coverage is simply a case of increasing the 
number of processors used.  To simulate the world 

we estimate approximately 1000-10000 

processors would be necessary, already within the 
range of some existing regional computer cluster 

facilities.  Second, the way in which populations 

are distributed across processors is important. We 

are currently developing an algorithm that will 
partition the total population into equally 

populated regions, while allowing for boundary 

interfaces to be managed simply.  This will sharply 
reduce the maximal processing speed-limit caused 

by highly dense metropolitan centres such as 

London.  Of course, in a more sophisticated 
microsimulation, with an increase in the amount of 

data per individual, the limitations imposed by 

communication overheads would be more severe, 
but the lessons above still apply. In any case, we 

believe efficient packing of the data should limit 

this additional effect. 

 
The generic nature of the model 

The principal goal of this project was to 

demonstrate the feasibility of large-scale 
microsimulation of disease dynamics using high 

performance cluster computing resources. Using 

currently available technology, the model 
structure proposed has been shown to be able to 

run a microsimulation of the entire UK population, 

and, by extrapolation (using additional 
processors), of a continent or the world. The 

model at this stage is a transmission model, with 
a simple “black box” of transmission dynamics. 

This black box can be adapted to different forms 

of directly transmitted disease. Microsimulation 
modelling particularly suits the stochastic 

dynamics observed at the early stage of a 

potentially global disease, as both transmission 

and clearance from the individual are probabilistic, 
and at the individual level may cause survival or 

eradication of the virulent strain. On the other 

hand, microsimulation only seems appropriate for 
modelling the spread of a disease from a region 

with moderate prevalence to other regions when 

the travel rate is low. When a large proportion of 
the population are mobile, less computationally 

demanding deterministic methods are sufficient.   

 
After the epidemic simulations reported here and 

elsewhere (Ferguson 2005,6), perhaps the largest 

dynamic microsimulation reported in print is 

SVERIGE (Holm et al., undated), which models the 
lifepaths of c. 9 million separate individuals.  Of 

course, in comparison to SVERIGE epidemic 

simulations are limited in scope, modelling only 
transmissible disease. Nor do these models base 

themselves on the type of detailed data-structure 

which is available to the SVERIGE group, due to 
the extensive data-collection system of the 

Swedish government, and its availability to 

researchers. Such personal data are rarely 
available in other countries, either because the 

data do not exist (as in developing countries) or 

due to regulation of data (as in most other 

developed countries). In addition, SVERIGE places 
its basic human focus on the family, a term 

missing in the reported epidemic 

microsimulations, which focus instead on the 
health of individuals living in households.  

However, these differences are not intrinsic to the 

simulation structure outlined in this paper, but 
rather are a result of our own distinct modelling 

goals.  According to modelling need either the 

„home‟ or „individual‟ objects in our model could be 
treated instead as a „family‟.  Similarly, additional 
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personal characteristics and behaviours could be 

factored in, either readily (e.g. earnings and 

taxes; family formation and dissolution; localised 

mortality and fertility rates), or after some 
additional work (e.g. matching of employees with 

local, regional and national job vacancies).  Even 

the uniform grid currently utilised in our model 
can be simply transformed, via topological 

mapping, to cater for existing non-grid-based 

administrative geographies, tying in directly with 
existing census data sources without affecting 

model functionality (c.f. Ferguson et al., 2005).  

The real difference between SVERIGE and our 
model is simply that of scale.  Our model 

demonstrates how the modelled population of a 

geographically detailed microsimulation can be 

scaled up through the computationally efficient 
subdivision of spatial units across multiple 

processors. 

 
 

CONCLUSION 

 
Potential for use in decision making 

The model presented appears to bear promise as 

a tool for the future evaluation of alternative 
interventions in the control of infectious diseases. 

We emphasize that this computational framework 

could support multiple diseases and virtual 

populations differentiated by parameters values. 
While the current underlying disease transmission 

model would remain transparent, the addition of 

extra layers of environmental and clinical data 
would allow the study of sophisticated phenomena 

with increasing spatial and temporal resolution. 

Thus the model is not static and inflexible, but 
open to a process of successive refinement. 

Naturally such development would require access 

to international epidemiological data. 
 

The model is, of course, strictly dependent on the 

assumptions regarding the black box of the 
individual disease pattern. Indeed, the variation of 

the parameter values, and some of the interaction 

assumptions of the population reflect the 

difference between diseases, and hence the 
potential virulence (Anderson and May, 1991; 

Lloyd-Smith et al., 2005; Weiss and McMichael, 

2004). Inevitably, the insertion of inappropriate 
parameter values will necessarily cause incorrect 

evaluation of the impact of interventions. A 

corollary of this, from a policy point of view, is 
that if adjusting a parameter yields radically 

varying results this indicates a gross sensitivity 

which can act as an indicator to where further 
study of the disease or the intervention should be 

pursued. 

 

Feasibility of extension 
The program is modular, requiring only the 

definition of the simulation boundaries. The 

population is readily structured for the simulation, 
and the program can, with minimal changes, be 

used for any size region, although the partitioning 

to regions must be performed efficiently. We are 
currently investigating the use of meshing 

algorithms to refine this partitioning and the effect 

of these meshes on performance. However the 

current algorithm is adequate. 

 
At present the model has been developed and has 

demonstrated the capacity to model disease 

transmission in the UK and Ireland. The main 
limitation on the model is the number of 

processors available on the local prototype cluster. 

A cluster of ~1000 processors (or cores) (1 
terraflop) would permit the modelling of Europe 

and of order 10,000 the modelling of the world 

(10-100 terraflops). With efficient partitioning of 
populations across processors the authors believe 

these numbers could be reduced by an order of 

magnitude, making global modelling accessible to 

typical current national or regional computing 
clusters.  For example the UK North-West Science 

Grid (http://www.nw-grid.ac.uk) will provide up to 

about 4000 cores capable of running this global 
model by 2007.  

 

We believe that the generic modelling approach 
presented in this paper provides a first step 

towards the creation of a novel tool for use by the 

international microsimulation community.  We also 
hope, more broadly, that it provides a challenge to 

this same community to revisit the issue of the 

computational limits to microsimulation modelling.  

As we have demonstrated, microsimulation 
models no longer have to confine themselves to 

use of a single computing processor. 
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