2,895 research outputs found

    Bandgap and effective mass of epitaxial cadmium oxide

    Get PDF
    The bandgap and band-edge effective mass of single crystal cadmium oxide, epitaxially grown by metal-organic vapor-phase epitaxy, are determined from infrared reflectivity, ultraviolet/visible absorption, and Hall effect measurements. Analysis and simulation of the optical data, including effects of band nonparabolicity, Moss-Burstein band filling and bandgap renormalization, reveal room temperature bandgap and band-edge effective mass values of 2.16±0.02 eV and 0.21±0.01m0 respectively

    The origin of the red luminescence in Mg-doped GaN

    Full text link
    Optically-detected magnetic resonance (ODMR) and positron annihilation spectroscopy (PAS) experiments have been employed to study magnesium-doped GaN layers grown by metal-organic vapor phase epitaxy. As the Mg doping level is changed, the combined experiments reveal a strong correlation between the vacancy concentrations and the intensity of the red photoluminescence band at 1.8 eV. The analysis provides strong evidence that the emission is due to recombination in which electrons both from effective mass donors and from deeper donors recombine with deep centers, the deep centers being vacancy-related defects.Comment: 4 pages, 3 figure

    In situ H(2)S passivation of In(0.53)Ga(0.47)As/InP metal-oxide-semiconductor capacitors with atomic-layer deposited HfO(2) gate dielectric

    Get PDF
    We have studied an in situ passivation of In(0.53)Ga(0.47)As, based on H(2)S exposure (50-350 degrees C) following metal organic vapor phase epitaxy growth, prior to atomic layer deposition of HfO(2) using Hf[N(CH(3))(2)](4) and H(2)O precursors. X-ray photoelectron spectroscopy revealed the suppression of As oxide formation in air exposed InGaAs surfaces for all H(2)S exposure temperatures. Transmission electron microscopy analysis demonstrates a reduction of the interface oxide between the In(0.53)Ga(0.47)As epitaxial layer and the amorphous HfO(2) resulting from the in situ H(2)S passivation. The capacitance-voltage and current-voltage behavior of Pd/HfO(2)/In(0.53)Ga(0.47)As/InP structures demonstrates that the electrical characteristics of samples exposed to 50 degrees C H(2)S at the end of the metal-organic vapor-phase epitaxy In(0.53)Ga(0.47)As growth are comparable to those obtained using an ex situ aqueous (NH(4))(2)S passivation. (c) 2008 American Institute of Physics. (DOI: 10.1063/1.2829586

    MOVPE growth and characterisation of ZnO properties for optoelectronic applications

    Get PDF
    ZnO, Epitaxy, Metal organic vapor phase epitaxy, MOCVD, CVD, Semiconductor, Optoelectronics, X-ray diffraction, Cathodoluminescence, MicroelectronicsMagdeburg, Univ., Fak. fĂĽr Naturwiss., Diss., 2007von Nikolay OleynikZsfassung in dt. Sprach

    Changing vacancy balance in ZnO by tuning synthesis between zinc/oxygen lean conditions

    Get PDF
    The nature of intrinsic defects in ZnO films grown by metal organic vapor phase epitaxy was studied by positron annihilation and photoluminescence spectroscopy techniques. The supply of Zn and O during the film synthesis was varied by applying different growth temperatures (325–485 °C), affecting decomposition of the metal organic precursors. The microscopic identification of vacancy complexes was derived from a systematic variation in the defect balance in accordance with Zn/O supply trends.Peer reviewe

    Reduction of parasitic reaction in high-temperature AlN growth by jet stream gas flow metal–organic vapor phase epitaxy

    Get PDF
    AlGaN-based deep ultraviolet light-emitting diodes (LEDs) have a wide range of applications such as medical diagnostics, gas sensing, and water sterilization. Metal–organic vapor phase epitaxy (MOVPE) method is used for the growth of all-in-one structures, including doped layer and thin multilayers, using metal–organic and gas source raw materials for semiconductor devices. For AlN growth with high crystalline quality, high temperature is necessary to promote the surface migration of Al atoms and Al-free radicals. However, increase in temperature generates parasitic gas-phase prereactions such as adduct formation. In this work, AlN growth at 1500 °C by a stable vapor phase reaction has been achieved by jet stream gas flow metal–organic vapor phase epitaxy. The AlN growth rate increases with gas flow velocity and saturates at ~ 10 m/s at room temperature. Moreover, it is constant at an ammonia flow rate at a V/III ratio from 50 to 220. These results demonstrate the reduction in adduct formation, which is a typical issue with the vapor phase reaction between triethylaluminum and ammonia. The developed method provides the in-plane uniformity of AlN thickness within 5%, a low concentration of unintentionally doped impurities, smooth surface, and decrease in dislocation density because of the suppression of parasitic reactions

    Illumination and annealing characteristics of two-dimensional electron gas systems in metal-organic vapor-phase epitaxy grown AlGaN/AlN/GaN heterostructures

    Get PDF
    We studied the persistent photoconductivity (PPC) effect in AlGaN/AlN/GaN heterostructures with two different Al-compositions (x=0.15 and x=0.25). The two-dimensional electron gas formed at the AlN/GaN heterointerface was characterized by Shubnikov-de Haas and Hall measurements. Using optical illumination, we were able to increase the carrier density of the Al0.15Ga0.85N/AlN/GaN sample from 1.6x10^{12} cm^{-2} to 5.9x1012 cm^{-2}, while the electron mobility was enhanced from 9540 cm2/Vs to 21400 cm2/Vs at T = 1.6 K. The persistent photocurrent in both samples exhibited a strong dependence on illumination wavelength, being highest close to the bandgap and decreasing at longer wavelengths. The PPC effect became fairly weak for illumination wavelengths longer than 530 nm and showed a more complex response with an initial negative photoconductivity in the infrared region of the spectrum (>700 nm). The maximum PPC-efficiency for 390 nm illumination was 0.011% and 0.005% for Al0.25Ga0.75N/AlN/GaN and Al0.15Ga0.85N/AlN/GaN samples, respectively. After illumination, the carrier density could be reduced by annealing the sample. Annealing characteristics of the PPC effect were studied in the 20-280 K temperature range. We found that annealing at 280 K was not sufficient for full recovery of the carrier density. In fact, the PPC effect occurs in these samples even at room temperature. Comparing the measurement results of two samples, the Al0.25Ga0.75N/AlN/GaN sample had a larger response to illumination and displayed a smaller recovery with thermal annealing. This result suggests that the energy scales of the defect configuration-coordinate diagrams for these samples are different, depending on their Al-composition.Comment: 27 pages, 8 figure
    • …
    corecore