28 research outputs found

    Comparison results for the Stokes equations

    Full text link
    This paper enfolds a medius analysis for the Stokes equations and compares different finite element methods (FEMs). A first result is a best approximation result for a P1 non-conforming FEM. The main comparison result is that the error of the P2-P0-FEM is a lower bound to the error of the Bernardi-Raugel (or reduced P2-P0) FEM, which is a lower bound to the error of the P1 non-conforming FEM, and this is a lower bound to the error of the MINI-FEM. The paper discusses the converse direction, as well as other methods such as the discontinuous Galerkin and pseudostress FEMs. Furthermore this paper provides counterexamples for equivalent convergence when different pressure approximations are considered. The mathematical arguments are various conforming companions as well as the discrete inf-sup condition

    Quasi-optimal nonconforming methods for symmetric elliptic problems. I -- Abstract theory

    Get PDF
    We consider nonconforming methods for symmetric elliptic problems and characterize their quasi-optimality in terms of suitable notions of stability and consistency. The quasi-optimality constant is determined and the possible impact of nonconformity on its size is quantified by means of two alternative consistency measures. Identifying the structure of quasi-optimal methods, we show that their construction reduces to the choice of suitable linear operators mapping discrete functions to conforming ones. Such smoothing operators are devised in the forthcoming parts of this work for various finite element spaces
    corecore