4 research outputs found

    Pseudogene-gene functional networks are prognostic of patient survival in breast cancer

    Get PDF
    Background: Given the vast range of molecular mechanisms giving rise to breast cancer, it is unlikely universal cures exist. However, by providing a more precise prognosis for breast cancer patients through integrative models, treatments can become more individualized, resulting in more successful outcomes. Specifically, we combine gene expression, pseudogene expression, miRNA expression, clinical factors, and pseudogene-gene functional networks to generate these models for breast cancer prognostics. Establishing a LASSO-generated molecular gene signature revealed that the increased expression of genes STXBP5, GALP and LOC387646 indicate a poor prognosis for a breast cancer patient. We also found that increased CTSLP8 and RPS10P20 and decreased HLA-K pseudogene expression indicate poor prognosis for a patient. Perhaps most importantly we identified a pseudogene-gene interaction, GPS2-GPS2P1 (improved prognosis) that is prognostic where neither the gene nor pseudogene alone is prognostic of survival. Besides, miR-3923 was predicted to target GPS2 using miRanda, PicTar, and TargetScan, which imply modules of gene-pseudogene-miRNAs that are potentially functionally related to patient survival. Results: In our LASSO-based model, we take into account features including pseudogenes, genes and candidate pseudogene-gene interactions. Key biomarkers were identified from the features. The identification of key biomarkers in combination with significant clinical factors (such as stage and radiation therapy status) should be considered as well, enabling a specific prognostic prediction and future treatment plan for an individual patient. Here we used our PseudoFuN web application to identify the candidate pseudogene-gene interactions as candidate features in our integrative models. We further identified potential miRNAs targeting those features in our models using PseudoFuN as well. From this study, we present an interpretable survival model based on LASSO and decision trees, we also provide a novel feature set which includes pseudogene-gene interaction terms that have been ignored by previous prognostic models. We find that some interaction terms for pseudogenes and genes are significantly prognostic of survival. These interactions are cross-over interactions, where the impact of the gene expression on survival changes with pseudogene expression and vice versa. These may imply more complicated regulation mechanisms than previously understood. Conclusions: We recommend these novel feature sets be considered when training other types of prognostic models as well, which may provide more comprehensive insights into personalized treatment decisions

    Status and perspectives of hospital mortality in a public urban Hellenic hospital, based on a five-year review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of hospital mortality helps to assess the standards of health-care delivery.</p> <p>Methods</p> <p>This is a retrospective cohort study evaluating the causes of deaths which occurred during the years 1995–1999 in a single hospital. The causes of death were classified according to the International Statistical Classification of Diseases (ICD-10).</p> <p>Results</p> <p>Of the 149,896 patients who were discharged the 5836 (3.4%) died. Males constituted 55% and females 45%. The median age was 75.1 years (1 day – 100 years).</p> <p>The seven most common ICD-10 chapters IX, II, IV, XI, XX, X, XIV included 92% of the total 5836 deaths.</p> <p>The most common contributors of non-neoplasmatic causes of death were cerebrovascular diseases (I60–I69) at 15.8%, ischemic heart disease (I20–I25) at 10.3%, cardiac failure (I50.0–I50.9) at 7.9%, diseases of the digestive system (K00–K93) at 6.7%, diabetes mellitus (E10–E14) at 6.6%, external causes of morbidity and mortality (V01–Y98) at 6.2%, renal failure (N17–N19) at 4.5%, influenza and pneumonia (J10–J18) at 4.1% and certain infectious and parasitic diseases (A00–B99) at 3.2%, accounting for 65.3% of the total 5836 deaths.</p> <p>Neoplasms (C00–D48) caused 17.7% (n = 1027) of the total 5836 deaths, with leading forms being the malignant neoplasms of bronchus and lung (C34) at 3.5% and the malignant neoplasms of large intestine (C18–21.2) at 1.5%. The highest death rates occurred in the intensive care unit (23.3%), general medicine (10.7%), cardiology (6.5%) and nephrology (5.5%).</p> <p>Key problems related to certification of death were identified. Nearly half of the deaths (49.3%: n = 2879) occurred by the completion of the third day, which indicates the time limits for investigation and treatment. On the other hand, 6% (n = 356) died between the 29<sup>th </sup>and 262<sup>nd </sup>days after admission.</p> <p>Inadequacies of the emergency care service, infection control, medical oncology, rehabilitation, chronic and terminal care facilities, as well as lack of regional targets for reducing mortality related to diabetes, recruitment of organ donors, provision for the aging population and lack of prevention programs were substantiated.</p> <p>Conclusion</p> <p>Several important issues were raised. Disease specific characteristics, as well as functional and infrastructural inadequacies were identified and provided evidence for defining priorities and strategies for improving the standards of care. Effective transformation can promise better prospects.</p

    Central Washington University Undergraduate/Graduate Catalog 2001-2002

    Get PDF
    https://digitalcommons.cwu.edu/catalogs/1267/thumbnail.jp

    Central Washington University Undergraduate/Graduate Catalog 2002-2003

    Get PDF
    https://digitalcommons.cwu.edu/catalogs/1269/thumbnail.jp
    corecore