5,270 research outputs found

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    MAP: Medial Axis Based Geometric Routing in Sensor Networks

    Get PDF
    One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, the length of the communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing Protocol that does not require locations, makes routing decisions locally, and achieves good load balancing. In its preprocessing phase, MAP constructs the medial axis of the sensor field, defined as the set of nodes with at least two closest boundary nodes. The medial axis of the network captures both the complex geometry and non-trivial topology of the sensor field. It can be represented compactly by a graph whose size is comparable with the complexity of the geometric features (e.g., the number of holes). Each node is then given a name related to its position with respect to the medial axis. The routing scheme is derived through local decisions based on the names of the source and destination nodes and guarantees delivery with reasonable and natural routes. We show by both theoretical analysis and simulations that our medial axis based geometric routing scheme is scalable, produces short routes, achieves excellent load balancing, and is very robust to variations in the network model

    A Scale-Space Medialness Transform Based on Boundary Concordance Voting

    Get PDF
    The Concordance-based Medial Axis Transform (CMAT) presented in this paper is a multiscale medial axis (MMA) algorithm that computes the medial response from grey-level boundary measures. This non-linear operator responds only to symmetric structures, overcoming the limitations of linear medial operators which create “side-lobe” responses for symmetric structures and respond to edge structures. In addition, the spatial localisation of the medial axis and the identification of object width is improved in the CMAT algorithm compared with linear algorithms. The robustness of linear medial operators to noise is preserved in our algorithm. The effectiveness of the CMAT is accredited to the concordance property described in this paper. We demonstrate the performance of this method with test figures used by other authors and medical images that are relatively complex in structure. In these complex images the benefit of the improved response of our non-linear operator is clearly visible

    A Framework for Symmetric Part Detection in Cluttered Scenes

    Full text link
    The role of symmetry in computer vision has waxed and waned in importance during the evolution of the field from its earliest days. At first figuring prominently in support of bottom-up indexing, it fell out of favor as shape gave way to appearance and recognition gave way to detection. With a strong prior in the form of a target object, the role of the weaker priors offered by perceptual grouping was greatly diminished. However, as the field returns to the problem of recognition from a large database, the bottom-up recovery of the parts that make up the objects in a cluttered scene is critical for their recognition. The medial axis community has long exploited the ubiquitous regularity of symmetry as a basis for the decomposition of a closed contour into medial parts. However, today's recognition systems are faced with cluttered scenes, and the assumption that a closed contour exists, i.e. that figure-ground segmentation has been solved, renders much of the medial axis community's work inapplicable. In this article, we review a computational framework, previously reported in Lee et al. (2013), Levinshtein et al. (2009, 2013), that bridges the representation power of the medial axis and the need to recover and group an object's parts in a cluttered scene. Our framework is rooted in the idea that a maximally inscribed disc, the building block of a medial axis, can be modeled as a compact superpixel in the image. We evaluate the method on images of cluttered scenes.Comment: 10 pages, 8 figure

    The tangent cone, the dimension and the frontier of the medial axis

    Get PDF
    This paper establishes a relation between the tangent cone of the medial axis of X at a given point a ∈ Rn and the medial axis of the set of points m(a) in X realising the Euclidean distance d(a, X). As a consequence, a lower bound for the dimension of the medial axis of X in terms of the dimension of the medial axis of m(a) is obtained. This formula appears to be the missing link to the full description of the medial axis’ dimension. An extended study of potentially troublesome points on the frontier of the medial axis is also provided, resulting in their characterisation by the recently introduced by Birbrair and Denkowski reaching radius whose definition we simplify

    Modeling of multifunctional porous tissue scaffolds with continuous deposition path plan

    Get PDF
    A novel modeling technique for porous tissue scaffolds with targeting the functionally gradient variational porosity with continuous material deposition planning has been proposed. To vary the porosity of the designed scaffold functionally, medial axis transformation is used. The medial axis of each layers of the scaffold is calculated and used as an internal feature. The medial axis is then used connected to the outer contour using an optimum matching. The desired pore size and hence the porosity have been achieved by discretizing the sub-regions along its peripheral direction based on the pore size while meeting the tissue scaffold design constraints. This would ensure the truly porous nature of the structure in every direction as well as controllable porosity with interconnected pores. Thus the desired controlled variational porosity along the scaffold architecture has been achieved with the combination of two geometrically oriented consecutive layers. A continuous, interconnected and optimized tool-path has been generated for successive layers for additive-manufacturing or solid free form fabrication process. The proposed methodology has been computationally implemented with illustrative examples. Furthermore, the designed example scaffolds with the desired pore size and porosity has been fabricated with an extrusion based bio-fabrication process

    Medial Axis Isoperimetric Profiles

    Full text link
    Recently proposed as a stable means of evaluating geometric compactness, the isoperimetric profile of a planar domain measures the minimum perimeter needed to inscribe a shape with prescribed area varying from 0 to the area of the domain. While this profile has proven valuable for evaluating properties of geographic partitions, existing algorithms for its computation rely on aggressive approximations and are still computationally expensive. In this paper, we propose a practical means of approximating the isoperimetric profile and show that for domains satisfying a "thick neck" condition, our approximation is exact. For more general domains, we show that our bound is still exact within a conservative regime and is otherwise an upper bound. Our method is based on a traversal of the medial axis which produces efficient and robust results. We compare our technique with the state-of-the-art approximation to the isoperimetric profile on a variety of domains and show significantly tighter bounds than were previously achievable.Comment: Code and supplemental available here: https://github.com/pzpzpzp1/isoperimetric_profil
    corecore