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The tangent cone, the dimension and the
frontier of the medial axis
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Abstract. This paper establishes a relation between the tangent cone of
the medial axis of X at a given point a ∈ R

n and the medial axis of
the set of points m(a) in X realising the Euclidean distance d(a, X).
As a consequence, a lower bound for the dimension of the medial axis
of X in terms of the dimension of the medial axis of m(a) is obtained.
This formula appears to be the missing link to the full description of the
medial axis’ dimension. An extended study of potentially troublesome
points on the frontier of the medial axis is also provided, resulting in their
characterisation by the recently introduced by Birbrair and Denkowski
reaching radius whose definition we simplify.
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1. Introduction

The medial axis, introduced by Blum in [1] as a central object in pattern
recognition, emerges under various names in numerous mathematical and ap-
plication problems. Lossless compression of data makes it an appealing object
in tomography, robotics, or simulation. At the same time, its natural definition
appears in various versions also in the fields of partial differential equations or
convex analysis. Indeed, the medial axis is precisely the locus of points where
the set distance function ceases to be differentiable. The distance function,
on the other hand, is a viscosity solution for the most simple eikonal equa-
tion ‖∇d‖ = 1 with the zero Dirichlet condition [2]. While it is a first-order
equation, it is natural to wonder where the solution is C 1-smooth. A deep
connection with the initial set geometry makes the medial axis an interest-
ing object for investigating geometrical and topological properties such as sets
singularities [3] or homotopy groups [4]. The object also attains increasing at-
tention in the context of Riemannian manifolds, where sets closely related to
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medial axes are studied under the name of cut loci [5–7]. However, extreme
attention to detail is advised while studying the Riemannian generalisation as
one has to take notice of non-Euclidean phenomena such as the existence of
conjugate points or several geodesics with common endpoints, which stirs up
the cut locus definition.

As medial axes are closely related to the extensively developed notion
of conflict sets, one can believe that most of the theorems concerning conflict
sets should have their counterparts in the medial axis theory. Unfortunately,
the medial axes are (in)famous for their instability [8–10]. Thus the proofs are
seldom transferable between the theories concerning these two objects. The
main result of the present paper is a proof of the medial axis analogue of [11]
Theorem 2.2. Since the proof presented by Birbrair and Siersma depends heav-
ily on the monotonicity of Conflict Sets—a phenomenon with no counterpart
in the medial axis setting—we are forced to develop an entirely new approach
to the problem based on an analysis of the graph of the distance function. A
similar problem was studied in a slightly broader sense and on the grounds
of the convex analysis in [12]. Focusing precisely on the medial axis, we are
able to provide more rigid results and formulæ. An immediate application of
the result answers the question about the dimension of a medial axis raised
in [13,14]. Later in the paper, potentially troublesome points of the medial
axis’ frontier are characterised by a limiting directional reaching radius, an
object combining the virtues of the Birbrair–Denkowski reaching radius [3]
and Miura’s radius of curvature [15]. It is adapted for the study of sets with
higher codimension, and it also provides insights into the Birbrair–Denkowski
archetype.

In this paper we restrict our attention to sets that are definable in the
o-minimal structures expanding the field of real numbers. Such an approach
gives us a framework with a handful of valuable tools. Firstly, the Hausdorff
dimension of a definable set is always an integer and corresponds with the
highest dimensional real vector space possible to map injectively into the set.
Furthermore, the Curve Selection Lemma holds, meaning that every point in
the closure of a definable set can be approached by a curve contained in the
set. At the same time, the setting chosen protects us from pathological Cantor-
like sets while conserving the applicability of the setting. Readers who are not
familiar with the notion of definable sets may think of them as semialgebraic
sets. An excellent introduction to the notion is found in [16,17].

Whenever in the paper the continuity (or upper- and lower limits) of a
family of sets or a (multi-) function is mentioned, it refers to the continuity
(or upper- and lower limits) in the Kuratowski sense (more on the Kuratowski
convergence is found in the book [18], an introduction to its relation with
medial axes is given in [19]). For a pair of vectors x, y ∈ R

n, we denote by [x, y]
the closed segment joining x and y, by 〈x, y〉 their standard scalar product,
and by ∠(x, y) the angle formed by these vectors, provided they are nonzero. A
closed ball centred at a, of radius r, is denoted by B(a, r), and S(a, r) denotes
its boundary—an (n − 1)-dimensional sphere of radius r centred at a.
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Figure 1. Examples of medial axes (in grey) of Euclidean
plane subsets. A The graph of the function y = x2. B The
graph of the function y =

√
1 − x2. C The silhouette of

Pikachu

For a closed, nonempty subset X of R
n endowed with the Euclidean

norm, we define the distance of a point a ∈ R
n to X by

d(a,X) = dX(a) := inf{‖a − x‖ : x ∈ X},

which allows us to introduce the set of closest points in X to a as

mX(a) := {x ∈ X | d(a,X) = ‖a − x‖}.

We will usually drop the indices of the (multi-)functions d and m.
The main object discussed in this paper is the medial axis of X denoted

by MX , that is, the set of points of R
n admitting more than one closest point

in the set X, namely

MX := {a ∈ R
n | #m(a) > 1}.

A descriptive way, the most often invoked, to imagine the medial axis, brings
an image of the propagation of a fire front starting at X. In this case, the
medial axis of X is precisely the set of points where fronts originating from
different starting points meet. This picturesque idea illustrates maybe the most
profound feature of the medial axis—it collects exactly those points of the
ambient space, at which the distance function is not differentiable (Fig. 1).

As an introductory remark, it is worth recalling that, as was shown in
[13], both the medial axis and the multifunction m(x) are definable in the
same structure as X. Moreover, the multifunction m(x) is upper (outer) semi-
continuous, meaning

lim sup
A�a→a0

m(a) ⊂ m(a0)

for any set A with a0 in its closure.
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2. The tangent cone of the medial axis

Let us begin by recalling that we have an explicit formula for the directional
derivative of the distance function due to Richard von Mises [20] (most often
misquoted as M. R. de Mises, the first ‘M.’ clearly standing for Monsieur, see
also [21]).

Theorem 2.1. (R. von Mises) Let X be a closed, nonempty subset of R
n, then

for every point a ∈ R
n\X all one-sided directional derivatives of the distance

function dX exist and are equal to

DvdX(a) = inf
{

−
〈

v,
x − a

‖x − a‖
〉

, x ∈ m(a)
}

.

Proof. For any a, b ∈ R
n, there is 〈a, b〉 = ‖a‖‖b‖ cos α, where α denotes the

angle between a and b. Thus, for ‖v‖ = 1 the assertion can be written as

DvdX(a) = inf{− cos αx, x ∈ m(a)},

where αx is the angle between x − a and v. Clearly, the value of − cos α
will be the smallest for the smallest α. Without loss of generality, assume
v = (1, 0, . . . , 0) and a = 0, then take x0 ∈ m(0) forming the smallest angle
with v, and xt ∈ m(tv) for t > 0. Since ‖xt − tv‖ ≤ ‖x0 − tv‖ we obtain

‖xt‖2 − ‖x0‖2 ≤ 2t(x(1)
t − x

(1)
0 ),

where x
(1)
t is the first coordinate of xt. Note, that since xt /∈ int B(0, d(0)),

there is, in particular,

0 ≤ x
(1)
t − x

(1)
0 .

Denote now by αt the angle formed by v and xt. By the Cosinus Theorem
applied to the triangle formed by tv, 0, xt, we have

d(tv)2 = ‖xt‖2 + t2 − 2‖xt‖t cos αt.

Keeping in mind d(0) = ‖x0‖ we can clearly see that

d(tv) − d(0)
t

=
1

d(tv) + d(0)

(‖xt‖2 − ‖x0‖2

t
+ t − 2‖xt‖ cos αt

)
.

Both d(tv) and ‖xt‖ converge to d(0) as t → 0, so the proof will be completed
if only αt → α0 and ‖xt‖2−‖x0‖2

t → 0. Actually, both claims can be derived
from the closedness of X. Indeed, closedness guarantees that for any ε > 0, we
can find such δ > 0 that for all x ∈ X with the first coordinate greater than
or equal to x

(1)
0 , there is x(1) −x

(1)
0 ≤ ε as long as ‖x‖ < d(0)+ δ, otherwise x0

would not realise the smallest angle among those formed by v and x ∈ m(0).
�

Remark 2.2. A more general version of von Mises theorem stated for semi-
concave functions is found in [22, Theorem 3.3.6].
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Figure 2. A A graphic depiction of Theorem 2.1. B The
graph Γ of the distance function for the set X = ∂(B(0, 2) ∪
{x > 0, |y| < 1}) together with its medial axis

Assuming that m(0) is a subset of the unit sphere, we can use the polar-
ization identity for the inner product to express Dvd(0,X) in the convenient
form

1
2

inf{‖v − y‖2 − ‖v‖2 − 1, y ∈ m(0)}.

Since the infimum is attained at y ∈ m(0), which is closest to v, the formula
simplifies even further down to

1
2
(d(v,m(0))2 − ‖v‖2 − 1).

The appearance of dm(0) in the formula for DvdX(0) brings along inter-
esting consequences and possibilities to describe the medial axis’ cone within
its category. However, our first result will be independent of the Mises The-
orem, for the situation for the subsets of the sphere is more straightforward
than the general one (Fig. 2).

In what follows CaE denotes the classical Peano tangent cone of a set
at its accumulation point a, i.e. the cone formed by all the directions v =
limν→∞ t−1

ν (xν − a), where E � xν → a and tν → 0+.

Proposition 2.3. Let Y ⊂ R
n be a closed proper subset of the unit sphere S.

Then, MY is the cone spanned over MS

Y computed in S with respect to the
induced metric. Moreover, in that case, C0MY = MY .

Proof. Start by observing that since Y is a subset of S and an open ball in
the induced metric is the intersection of a ball in R

n with S, clearly MS

Y ⊂
MY . To finish this part of the proof, we need to show that MY is a cone.
This follows from the observation that the intersection of S and any ball
B(x, d(x,m(x))), is always equal to a closed ball in S centered at x/‖x‖ with
radius d(x/‖x‖,m(x)) = d(x/‖x‖,m(x/‖x‖).

The second part of the theorem is trivial, as MY is a cone, and every
vector λv, where λ ∈ R+, v ∈ MY , approximating an element of a tangent
cone C0MY belongs to MY . �
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Even this simple situation demands some finesse. On the one hand, it
is indeed necessary to take the closure of MY in Proposition 2.3. As seen for
Y = {xy = 0} ∩ S ⊂ R

3, a point v = (0, 0, 1) lies in Y so it cannot belong
to MY . Nevertheless, it is easy to check that v is a point of the tangent cone
at the origin of the medial axis. Additionally, since closed balls both in the
spherical and in the induced metric are the same, the choice of the metric used
to calculate MS

Y in Proposition 2.3 does not affect the assertion.
We will use the theorem of the Denkowskis [19].

Theorem 2.4. (A.Denkowska, M.Denkowski) Assume that X ⊂ R
n
x ×R

k
t is de-

finable, has closed t−sections and Xt → X0. Then for M = {(x, t) | #mXt
(x) >

1} we have

M0 ⊂ lim inf
π(M)�t→0

Mt

where π : (x, t) → x and we posit lim inf Mt = ∅ when 0 /∈ π(M)\{0}.

Remark 2.5. One of the most important corollaries of Theorem 2.4 binds the
tangent cone of the medial axis with the medial axis of a tangent cone for
definable sets. Namely, in the definable setting, due to Curve Selection Lemma,
the tangent cone C0X of a set X ⊂ R

n at a point X = 0 is given as the
Kuratowski limit of the set dilatations

C0X = lim
t→0

t−1X.

Since scaling the set scales its medial axis accordingly, Theorem 2.4 asserts
that

MC0X ⊂ lim inf Mt−1X = lim t−1MX = C0MX .

Even though the cone inclusion from the last remark looks promising to
describe the tangent cone of a medial axis at an arbitrary point, one stumbles
upon a gnawing obstacle while applying it to the problem. Since points of
a medial axis MX are separated from the set X, the lefthand side of the
inclusion from Remark 2.5 becomes empty, and the approach fails to deliver
any meaningful insight. Thus, to tackle the problem of the description of the
tangent cone, we need to be a trifle more cunning. In fact, we require of a
technical lemma which describes the geometry of the graph of the distance
function.

Lemma 2.6. For any closed X ⊂ R
n, a graph

Γ := {(x, y) ∈ R
n × R | y = d(x,X)}

has the following properties:
1. For any (a, d(a)) ∈ Γ,

{(x, y) ∈ R
n × R | |y − d(a)| > ‖x − a‖} ∩ Γ = ∅;

2. For any a ∈ R
n and v ∈ m(a), [(v, 0), (a, d(a))] ⊂ Γ;

3. For any (x, y) ∈ R
n × R with y < d(x),

(x, y) ∈ MΓ ⇐⇒ x ∈ MX , in other words: the medial axis of the
epigraph of d is equal to MX × R ∩ {(x, y) | y < d(x)}.
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Proof. 1. is a consequence of the Lipschitz condition for the distance func-
tion.

2. comes from m(tv + (1 − t)a) = {v} for t ∈ (0, 1], v ∈ m(a) together with

‖tv + (1 − t)a − v‖ = ‖(1 − t)a − (1 − t)v‖ = (1 − t)‖a − v‖.

3. can be proved by observing that 1. and 2. give together:

{(x, y) ∈ R
n × R | y − d(a) ≤ −‖x − a‖} ∩ Γ =

⋃
v∈m(a)

[(v, 0), (a, d(a))]

for every (a, d(a)) ∈ Γ. Indeed, if (x, y) ∈ ⋃
[(v, 0), (a, d(a))], then (2)

gives (x, y) ∈ Γ, moreover for a certain t ∈ [0, 1], there is

(x, y) = t(v, 0) + (1 − t)(a, d(a)) = (tv + (1 − t)a, (1 − t)d(a)).

Thus,

y − d(a) + ‖x − a‖ = −td(a) + ‖tv − ta‖ = t(−d(a) + ‖a − v‖) ≤ 0,

as pleaded.
On the other hand, taking (x, y) ∈ {y − d(a) ≤ −‖x − a‖} ∩ Γ by (1),
there is

d(x) − d(a) = y − d(a) = −‖x − a‖.

Therefore, for any v ∈ m(a) and x′ ∈ m(x), there is

‖a − x′‖ ≤ ‖x − x′‖ + ‖x − a‖ = ‖a − v‖
Thus, m(x) ⊂ m(a) and since y < d(a) there must exist t ∈ [0, 1] such
that (x, y) = (tv + (1 − t)a, (1 − t)d(a)) for some v ∈ m(a).
It is easy to check now that for every point p of the axis of the cone

C(a) := {(x, y) | y − d(a) ≤ −‖x − a‖},

the set mΓ(p) has the same number of points as m(a). Indeed, whenever m(a)
is a singleton, the intersection C(a) ∩ Γ is a single segment on the boundary
of C(a), thus mΓ(p) = mC(a)∩Γ(p) must be a singleton as well. On the other
hand, if m(a) consists of more than one point, then the intersection C(a) ∩ Γ
is a union of segments on the boundary of C(a) with endpoints—one at the
vertex of C(a) and the other at a point of m(a) × {0}. Therefore,

mΓ(p) =

{(
a + d(a)−p(n+1)

2d(a) (m(a) − a)
)

×
{

d(a)+p(n+1)

2

}
, p(n+1) > −d(a),

m(a) × {0}, p(n+1) ≤ −d(a)
,

where p(n+1) < d(a) denotes the last coordinate of p. �

With the properties of the graph of the distance function at hand, we are
ready to prove:

Theorem 2.7. For any closed definable X ⊂ R
n with 0 ∈ MX , there is

Mm(0) ⊂ C0MX .
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Proof. If 0 ∈ MX\MX , the theorem is trivial as Mm(0) = ∅. Assume then,
without loss of generality, that 0 ∈ MX and d(0) = 1. Denote by Γ the graph
of the distance function d as was done in the previous lemma. According to
Remark 2.5, MC(0,1)Γ ⊂ C(0,1)MΓ. To prove the theorem, we will establish the
relation between these sets and Mm(0) and C0MX .

Let us begin with C(0,1)MΓ. Since Lemma 2.6(3) gives

(MΓ − (0, 1)) ∩ {y ≤ −‖x‖} = MX × R ∩ {y ≤ −‖x‖},

the tangent cones of MΓ − (0, 1) and MX × R must coincide in the cone {y ≤
α‖x‖} for any choice of α < −1. Because R is a cone, we further obtain the
coincidence of C(0,1)MΓ and C0MX × R in the aforementioned cone.

As it comes to Mm(0) and MC(0,1)Γ, we will investigate first the set C(0,1)Γ.
Since dX is a Lipschitz function, the explicit formula for the directional deriv-
ative DxdX(0) allows us to express C(0,1)Γ as the graph of the function

x → DxdX(0) =
1
2
(d(x,m(0))2 − ‖x‖2 − 1).

Consider for a moment the graph Γ1 of the function x → d(x,m(0)). For
‖x‖ < 1, it has the structure of a cone with a vertex at (0, 1), furthermore the
tangent cone C(0,1)Γ1 can be expressed as the graph of the same function as
in the case of Γ, namely x → DxdX(0). The medial axis of the epigraph of
d(x,m(0)) after the translation by (0,−1) has to coincide with MC(0,1)Γ, thus
their intersections with the cone {y ≤ α‖x‖} are also equal.

We have obtained

C0MX × R ∩ {y ≤ α‖x‖} = C(0,1)MΓ ∩ {y ≤ α‖x‖}
and

Mm(0) × R ∩ {y ≤ α‖x‖} = MC(0,1)Γ ∩ {y ≤ α‖x‖}.

Since, as we mentioned at the beginning, MC(0,1)Γ ⊂ C(0,1)MΓ, the assertion
follows. �

As the following example shows, the equality between CaMX and Mm(a)

cannot be expected in general.

Example. Let X = {(x, y, z) ∈ R
3 | x2 = 1, (y + z)(y − z) = 0 }, then there is

• MX = {(x, y, z) ∈ R
3 | yz = 0, y �= z} ∪ {(x, y, z) ∈ R

3 | x = 0},
• m(0) = {(1, 0, 0), (−1, 0, 0)},
• Mm(0) = {(x, y, z) ∈ R

3 | x = 0}.
It is easy to check that indeed Mm(0) is a proper subset of C0MX (Fig. 3).

The reconstruction of the whole tangent cone of MX based solely on m(a)
may not be possible due to sequences of points xν in the medial axis with m(xν)
converging to a singleton. Assuming no such sequence can be found, we can
prove the following.

Corollary 2.8. Assume that 0 ∈ MX for a closed definable X ⊂ R
n. If there

exists a neighbourhood of the origin U and r > 0 such that for any a ∈ U ∩MX ,
there is diam m(a) > r, then C0MX = Mm(0).
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Figure 3. Even though the medial axis of the black double
cross consists of all of the visible surfaces, only the shaded one
contributes to Mm(0)

Proof. Theorem 2.7 gives us one of the inclusions in question. To prove the
other one, start by taking v ∈ C0MX . By definition, we can find sequences
{aν} in MX and {λν} in R+ such that

aν → 0, λν → 0, and aν/λν → v.

Take any convergent sequence of elements m(aν) � xν → x ∈ m(0); we
will show that x ∈ mm(0)(v). Since the additional assumption on the diameter
of m(aν) ensures diam lim sup m(aν) ≥ r > 0 this will give v ∈ Mm(0).

Consider B(aν , d(aν)) ∩ S(0, d(0)). For ‖aν‖ < d(0), it is a closed ball
Bν in S(0, d(0)) centered at aν/‖aν‖. Moreover, B(aν , d(aν)) ∩ X = m(aν)
also ensures Bν ∩ m(0) = m(aν) ∩ m(0). Since xν → x, the sequence of balls
Bν converges to some closed ball B centered at v with x on its boundary. Of
course, the interior of B has an empty intersection with m(0), as for every
ε > 0, B(aν , d(aν) − ε) ∩ X = ∅, which proves that x is the closest point to v
in m(0). �

The author suspects, that the equality holds everywhere outside of
MX\MX . However the proof does not seem to be simple.

As for the parts of the tangent cone at a point x of the medial axis
which are not detected by m(x), it is still possible to distinguish parts of X
contributing to CxMX . While verifying whether v ∈ S belongs to the tangent
cone of MX , the investigation of X can be restricted to a neighbourhood of
mm(0)(v).
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Proposition 2.9. Assume that 0 ∈ MX . For any v ∈ S and δ > 0, there exist
r, ε > 0 such that for

C(v, r, ε) := {a ∈ R
n | ‖a‖ < r,∠(a, v) < ε},

there is MX ∩ C(v, r, ε) = MX∩mm(0)(v)δ ∩ C(v, r, ε).
Where mm(0)(v)δ := {x ∈ R

n | d(x,mm(0)(v)) ≤ δ}.
Proof. Without loss of generality we can assume that d(0,X) = 1. Denote

b(v) := {a ∈ S | d(v, a) ≤ d(v,m(0))},

we will show first that for an arbitrary ζ > 0 we can find r, ε > 0 such that

MX ∩ C(v, r, ε) = MX∩b(v)ζ ∩ C(v, r, ε).

Observe firstly that for a ∈ R
n and y ∈ mm(0)(v) an inequality holds

d(a,X) ≤ d(a, y) =
√

1 + ‖a‖2 − 2‖a‖ cos ∠(a, y).

Since the angle ∠(v, y) is strictly smaller than π, we can choose a positive
ε0 < π − ∠(v, y). Then for a ∈ R

n forming an angle ∠(a, v) < ε0 we have

∠(a, y) ≤ ∠(a, v) + ∠(v, y) < π

which means

1 + ‖a‖2 − 2‖a‖ cos ∠(a, y) ≤ 1 + ‖a‖2 − 2‖a‖(cos(∠(v, y) + ε0)).

Now for any η > 0 we can shrink the ε0 down to εη to obtain

− cos(∠(v, y) + εη) < −(cos ∠(v, y) − η)

and then pick rη > 0 such that ‖a‖ < rη implies

1 + ‖a‖2 − 2‖a‖(cos ∠(v, y) − η) ≤ (1 − ‖a‖(cos ∠(v, y) − 2η))2.

Therefore it is possible to estimate

d(a,X) < 1 − ‖a‖(cos ∠(v, y) − 2η) =: Ra

with η arbitrary close to zero for a ∈ C(v, r, ε) with r < rη, ε < εη.
To end the first part of the proof we need to show that for any a ∈

C(v, r, ε), we have B(a,Ra)\intB(0, 1) ⊂ b(v)ζ . First observe that by shrink-
ing r and η we can obtain B(a,Ra) ⊂ B(0, 1+ζ/2). Now we need to prove that
B(a,Ra)∩S ⊂ b(v)ζ/2 which is equivalent to d(v, B(a,Ra)∩S) < d(v,mm(0)(v))+
ζ/2 and can be verified in the plane spanned by v and a. However, the in-
equality holds uniformly for η, r, ε small enough in any such plane, due to
Pythagorean Theorem.

Now, since X is closed and m(0)∩ b(v) = mm(0)(v), for any δ > 0 we can
find a positive number ζ such that

X ∩ b(v)ζ ⊂ X ∩ mm(0)(v)δ.

Since all points in C(v, r, ε) have their distance to X realised in b(v)ζ , the
assertion follows. �

Theorem 2.7 yields two immediate yet worthwhile corollaries.
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Corollary 2.10. In the considered situation, dima MX ≥ dim Mm(a).

Where dima MX denotes the local dimension of MX at a (see Defini-
tion 3.2).

Proof. From Theorem 2.7 the medial axis Mm(a) is a subset of the tangent cone
CaMX . Thus, its dimension is bounded by dimCaMX . Since MX is definable,
dim MX is always greater than or equal to dimCaMX , and the assertion fol-
lows. �

The following result was known before (e.g. [12] Theorem 6.2 or [13]
Theorem 4.10 for the subset of points in the medial axis with dimm(a) = n−1),
Theorem 2.7 yields a proof that is more natural in the medial axis category.

Corollary 2.11. Point a ∈ MX is isolated in MX if and only if m(a) is a whole
sphere.

Proof. The sufficiency of the condition is apparent. For the proof of the neces-
sity, suppose that m(a) does not fill the sphere S(a, d(a)) entirely. It is easy
to observe (for example, using the compactness of the sphere, the continuity
of the distance function, and Theorem 2.3), that its medial axis is a cone of
dimension dim Mm(a) > 0. From Theorem 2.7 we derive that dim CaMX > 0,
hence a cannot be isolated. �

In other words, every eyelet in m(a) enables an escape of MX in its
general direction.

In the plane, the situation is, as usual, more straightforward.

Theorem 2.12. For a closed definable X ⊂ R
2, there is always

CaMX = Mm(a) − a.

Proof. Assume a = 0. Of course, given Theorem 2.7, the only strict inclusion
possible is Mm(0) � C0MX . Take then v ∈ C0MX\Mm(0) if such a point exists.
Since MX is definable, by the Curve Selection Lemma, there exists a continuous
γ : [0, 1] → MX with γ(0) = 0, tangential to v and such that 0 /∈ γ((0, 1]).
Moreover, as for every x ∈ m(0) a segment (0, x] does not intersect MX , the
image of γ and the set (0, 1] · m(0) must be disjoint. Take now ν ∈ Mm(0) ⊂
C0MX lying in the same connected component of R

2\(R+ · m(0)) as v and
denote by ψ a curve in MX tangential to ν. For a vector w ∈ R

2, there is
limt→0+ tw = 0 and lim supt→0+ m(tw) ⊂ m(0). Therefore, for any w in a
segment (v, ν) with an arbitrary choice of wt ∈ m(tw), starting from a certain
T > 0, a segment [tw,wt] has to intersect eventually either γ or ψ, which ends
in a contradiction. �

Remark 2.13. The proof of Theorem 2.12 heavily depends on the Curve Se-
lection Lemma, and the result is not valid outside of the o-minimal setting in
general. Consider the set X := ({x | x = 1

k , k ∈ Z\{0}} ∪ {0}) × {y | y2 ≥ 1}.
Then the tangent cone to MX at 0 is the whole plane, whereas the part visible
from the analysis of m(0) consists precisely of the x-axis (Fig. 4).
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Figure 4. Theorem 2.12. Starting from a certain T > 0, the
segment [tw,wt] intersects either γ or ψ

A slight variation of the Theorem 2.12 proof shows that the planar medial
axes cannot form cusps. This is a result analogous to the no cusp property of
the conflict sets from [11].

Corollary 2.14. For a closed definable X ⊂ R
2 and a ∈ MX , the germ of MX

at a is a union of definable curves γ1 . . . γs with distinct tangent cones at a.

Proof. Assume, for sake of contradiction, that two distinct curves γ1, γ2 in the
decomposition of the germ of MX share the same tangent cone. The curves
γ1, γ2 are disjoint for t positive and small enough due to definability. Therefore,
we can find a curve ϕ originating from zero and entirely included in the region
bounded by γ1, γ2. Then, for t small enough and vt ∈ m(ϕ(t)), we obtain an
analogous contradictory intersection of [ϕ(t), vt] with one of the initial curves.

�

Remark 2.15. Outside of the Euclidean plane the dimension of the medial axis
tangent cone can be strictly smaller than the medial axis one. Indeed, consider

A := {(x, y, 0) ∈ R
3 | |y| ≤ 4x2, 0 ≤ x}

and define

X := R
3\

⋃
{B(a, 1) | a ∈ A}.

Then MX = A, thus it is a pure two dimensional set whilst C0MX = {(t, 0, 0) |
t ≥ 0}.
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Remark 2.16. The results in this section bear the same flavour as those pro-
vided by Albano and Cannarsa in [23], however, concentrating on the distance
function rather than a general semi-concave function, we made our approach
to the tangent cone more comprehensive. The simple lower bound estimate of
Corollary 2.10 is slightly sharper than one obtained by Albano and Cannarsa.
For an example of two circles of equal radius equidistant from the origin of R

3,
our method bounds the dimension of the medial axis by 2, whereas methods
described in the cited paper allow to bound it only by 1. Furthermore, focus-
ing on the distance function allowed us to derive the sufficient condition for
the equality of the tangent cone and the medial axis of the closest points and
several other plane-related results such as no cusp property.

3. The dimension of the medial axis

Our aim now is to use the established relation between the tangent cone of the
medial axis at a point x ∈ MX and the medial axis of m(x) to describe the
dimension of the medial axis in a more refined way than Corollary 2.10. This
result can be viewed as an answer to the conjecture posted in [13,14].

We will use a notion of a cylindrical definable cell decomposition (cdcd)
from the o-minimal geometry, cf. [16]; it serves the role of quasi-stratification
of a definable set.

Definition 3.1. We call C ⊂ R
n a definable cell if

n = 1 : C is either a singleton {a} or an open interval (a, b);
n > 1 : for π : R

n → R
n−1 the natural projection on first (n − 1)

coordinates, π(C) is a cell in R
n−1 and C is either a definable graph of a

continuous function defined on π(C)

C = {(x, f(x) | x ∈ π(C)},

or a definable band between two such functions

C = {(x, y) | x ∈ π(C), f1(x) < y < f2(x)}.

Without much effort and implications on what follows, functions defining
cells can be assumed to be of class C k for an arbitrary k ∈ N. However, in
this paper we will not need such smoothness, thus just the continuity of the
functions is assumed.

Definition 3.2. We call a family of definable cells C a cylindrical definable cell
decomposition (cdcd) of R

n if the family C is finite, the cells of C are pair-
wise disjoint,

⋃ C = R
n, and a collection of projections on the first (n − 1)

coordinates {π(C), C ∈ C} is a cdcd of R
n−1.

We say that a cdcd C is adapted to a finite collection of definable sets
A1, . . . , Ak, if Ai is the union of certain cells of C for all i ∈ {1, . . . , k}. It is
a standard result from o- minimal geometry that such adapted cdcd exists for
any finite collection of definable sets [16]. Adapted cdcd serves to some extent
the role of stratification known from semialgebraic or analytic geometry in the
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definable setting. Since every cell C of a cdcd is homeomorphic to a finite-
dimensional real vector space, it follows that the dimension of a definable set
A is equal to

dim A = max{dim C | C ⊂ A} for a cdcd adapted to A,

which does not depend on the choice of a cdcd. The local dimension of A at a
point a ∈ A is defined then as

dima A = min{dim(A ∩ U) | U − a definable neighbourhood of a}.

Recall again that the multifunction m(x) is definable if X is a definable
set. By definition it means that the graph

Γm := {(x, y) ∈ R
n × R

n | y ∈ m(x)}
is definable and thus there exists a cdcd {D1, . . . , Dα} of R

n × R
n adapted to

the intersection Γm ∩ (MX ×R
n). From the definition of cdcd, the collection of

the projections of Di onto the first n coordinates forms a cdcd of R
n adapted

to MX . With this decomposition, we will prove further properties of the mul-
tifunction m(x), and as a consequence, we will obtain an explicit formula for
the dimension of MX .

Definition 3.3. Let D be a cdcd of R
n × R

n adapted to Γm. Denote by C the
cdcd of R

n obtained from the projections of the cells in D onto the first n
coordinates. We call x0 ∈ MX an interior point of MX with respect to D, if
there exists a neighbourhood U0 of x0 such that U0 ∩ C = U0 ∩ MX , where C
is the unique cell in C containing x0.

Remark 3.4. Mind that since every cell of a cdcd has pure dimension, the
condition U0 ∩ C = U0 ∩ MX implies dimx0 MX = dim C.

Proposition 3.5. Let D be a cdcd of R
n × R

n adapted to Γm and MX × R
n.

Assume that x0 ∈ MX is an interior point of MX w.r.t. D. Then the multi-
function m|MX

is continuous at x0.

Proof. It is known, cf. [3,13], that the multifunction m(x) is upper semi-
continuous along MX : for any x0 ∈ R

n, we have the inclusion lim supMX�x→x0

m(x) ⊂ m(x0). To prove the continuity of m|MX
, we need to show that m(x0)

is a subset of the lower Kuratowski limit. Explicitly, we need to show that

∀y ∈ m(x0), ∀U � y, ∃V � x0 : ∀x ∈ V ∩ MX , m(x) ∩ U �= ∅,

where U, V are open sets.
Take y = (y1, . . . , yn) ∈ m(x0) and a neighbourhood U1 × . . . × Un of y.

Denote by D the cell in D containing (x0, y) and by C its projection on R
n.

We will show the continuity of (πi ◦ m)(x) where πi is the natural projection
on the first i coordinates. Of course, (πn ◦m)(x) = m(x) and the assertion will
follow.

For the first coordinate, observe that C1 := (idRn × π1)(D) is either a
graph of a continuous function or a band between two such functions defined
over C. In the first case, we can easily find a neighbourhood V of x0 in MX

such that (π1 ◦m)(V ) ⊂ U1 which implies (π1 ◦m)(V )∩U1 �= ∅. In the case C1
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is a band between two functions f−, f+, there must be f−(x) < y1 < f+(x).
By continuity these inequalities must hold in a certain neighbourhood V of
x0, resulting in

sup
x∈V

f−(x) ≤ y1 ≤ inf
x∈V

f+(x).

Clearly, (π1 ◦ m)(V ) ∩ U1 �= ∅.
Assume now the composition πk ◦ m to be continuous for k < n. Again,

the cell Ck+1 := (idRn × πk+1)(D) is either a graph of a continuous function
fk+1 or a band between two such functions, this time defined over Ck. In the
first case, we can find a neighbourhood V = V0 × . . . × Vk of (x, y1, . . . , yk)
such that fk+1(V ) ⊂ Uk+1. As the composition πk ◦m(x) is continuous, we can
ensure (x, y′

1, . . . , y
′
k) ∈ V0 × V1 × . . . × Vk just by shrinking V0; by shrinking

it even further, we can also ensure that (y′
1, . . . , y

′
k) ∈ U1 × . . . × Uk. By doing

that, we obtain πk+1 ◦ m(V0) ⊂ U1 × . . . × Uk+1. The case of Ck+1 being a
band follows in the same manner.

As was mentioned earlier, the inclusion results in the continuity of m|MX

at every point of C, in particular at x0. �

The proof of Proposition 3.5 gives a soothing correlated result on the
continuity of m(x). In the o-minimal setting, the set of points at which m(x)
is discontinuous is always nowhere dense and is equal to the medial axis (see
[24] for a counter-example outside of the o-minimal setting). Luckily enough,
the restriction of m(x) to the medial axis exhibits an analogous behaviour. It
is still continuous outside of a subset nowhere dense in the induced topology.
Consequently, with R

n being locally compact, we have

Corollary 3.6. The set

{a ∈ MX | CaMX = Mm(a)}
is open and dense in MX .

Proof. For any cell C of a cdcd adapted to the definable set MX , the points
admitting a neighbourhood U such that U ∩ C = U ∩ MX form an open
and dense subset of MX . For any such point, we can find a relatively compact
neighbourhood V contained in the cell to which the point belongs. The theorem
now follows from Proposition 3.5 and Corollary 2.8, as diam m(x) is positive
and continuous on V . �

The main result of this paper, settling the question about the dimension
of the medial axis in the definable case, is the following.

Theorem 3.7. Let D be a cdcd of R
n × R

n adapted to Γm ∩ (MX × R
n). If

x0 ∈ MX is an interior point of MX w.r.t. D, then an equality occurs

dimx0 MX + dim m(x0) = n − 1.

Proof. Without loss of generality, we can assume x0 = 0.
We will prove the theorem by induction on the dimension of C—the cell

containing x0.
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Figure 5. Theorem 3.7. The set mm(0)(v) is a subset of the
affine space orthogonal to v

The case dim C = 0 is already proved in Corollary 2.11.
Assume now that the dimension of C equals k, and the theorem holds for

any cell C ′ of dimension smaller than k. Since 0 satisfies the assumptions of
Proposition 3.5, we can think about C0MX as the medial axis of m(0), then
clearly

dim0 MX = dim C ≥ dim C0C = dim Mm(0).

Corollary 3.6 states that we can find 0 �= v ∈ Mm(0) for which the tangent cone
to C0MX at v depends only on points in m(0) that are closest to v (and are
collected in a set mm(0)(v)). Therefore, for such v, after a suitable translation,
there is again CvMm(0) = Mmm(0)(v) and

dim Mm(0) ≥ dim CvMm(0) = dim Mm(0).

The set mm(0)(v) is a subset of both S(0, dX(0)) and S(v, dm(0)(v)). De-
note by L the unique n − 1 dimensional affine subspace of R

n containing the
intersection of the mentioned spheres. It is immediate that the subspace L can
be written as v⊥ + αv for a certain α ∈ R and that mm(0)(v) is a subset of L.
Therefore, the medial axis of mm(0)(v) in R

n is a Minkowski sum of vR and
the medial axis of L ∩ m(0) computed in L (denoted by ML

mm(0)(v)) (Fig. f5).

This means that dim Mmm(0)(v) = dim ML
mm(0)(v) + 1 and, in particular,

we have dim ML
mm(0)(v) < k. Due to the last inequality, every cell in the cdcd

of L adapted to ML
mm(0)(v) has the dimension bounded by k − 1 and so, by the
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induction hypothesis, for a generic x ∈ ML
mm(0)(v), there is

dim mm(0)∩L(x) = dimL − 1 − dim ML
mm(0)(v).

Now, the set mm(0)∩L(x) is a subset of m(0), so its dimension cannot
exceed dim m(0). At the same time, on the right side of the equality we have
obtained in fact n − 1 − dim Mmm(0)(v), which by our choice is greater than or
equal to n − 1 − dim MX .

The opposite inequality is far less complicated in proof. It suffices to
observe that U ∩ C = U ∩ MX is a warrant that the dimension of m(x) is
constant in U . Consequently Theorem 4.13 from [13] ensures that the sum
dim0 MX + dim m(0) cannot exceed n − 1.

Finally, we obtain the desired dim0 MX + dim m(0) = n − 1. �

Surprisingly, the formula for a generic point is enough to describe the
dimension at any point of MX . This strengthening of the results from [12,13],
and [25] solves the problem for sets definable in the o-minimal setting.

Theorem 3.8. For any point a ∈ MX , there is

dima MX + min{k | a ∈ Mk} = n − 1

where Mk = {a ∈ MX | dim m(a) = k}.
Proof. We will prove that

min{k | a ∈ Mk} = n − 1 − α ⇐⇒ dima MX = α

holds for any α ∈ N.
For α = 0, one of the implications is precisely the statement of Corol-

lary 2.11. The opposite one is given by Theorem 4.10 from [13].
Now assume the claim to be valid whenever α < α0. Mind that Theo-

rem 4.13 from [13] states that for any x ∈ MX

dim m(x) + dimMdim m(x) ≤ n − 1,

thus it is easy to observe that

min{k | a ∈ Mk} = n − 1 − α0 ⇒ dima MX = α0.

It remains to prove the opposite implication. Take any a ∈ MX with
dima MX = α0. The claim for α < α0 allows us to analyse just the points
in the vicinity of a where the local dimension of MX equals α0. Furthermore,
only dim m(a) ≥ n − 1 − α0 needs to be shown.

Assume otherwise: dim m(a) < n−1−α0. Surely, the dimension dimmm(a)

(v) is smaller than n − 1 − α0, for any v ∈ Mm(a) as well. Moreover, thanks to
Corollary 3.6 we can find a point v ∈ Mm(a) with dimv Mm(a)+dim mm(a)(v) =
n − 1. Now

α0 < n − 1 − dim mm(a)(v) = dimv Mm(a) ≤ dima MX = α0

gives the contradiction sought for. �
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Figure 6. The wristwatch example

Let us remark that in order to describe the dimension of the medial axis
MX at a given point a0 ∈ MX , it is indeed necessary to find the minimum
of the dimensions of m(a) for a in a sufficiently small neighbourhood U of
a0. Unfortunately, the problem appears even in the seemingly simple case of
planar subsets.

Example. (Wristwatch) Let X ⊂ R
2 be the boundary of B(0, 2)∪((−1, 1)×R).

Then

dim0 MX + dim m(0) = dim({0} × R) + dim{x2 + y2 = 2, |x| ≥ 1} = 2.

Finally, we give a global formula for the dimension of the medial axis
(Fig. 6).

Corollary 3.9. For a closed definable set X ⊂ R
n,

dim MX = n − 1 − min
a∈MX

dim m(a).

In particular,

dim MX ≥ n − 1 − dim X.

Proof. Obvious from Theorem 3.8. �

Remark 3.10. If X is a collection of isolated points, its medial axis MX is
exactly the conflict set of the singletons included in X (also called the Voronoi
diagram of X). The dimension of m(a) equals zero for any point a ∈ R

n, and
the global formula indeed gives dimMX = n−1, as predicted by the theory of
conflict sets [11]. Conversely the conflict set theory assures that the dimension
dima MX = n−1, whenever for a given a ∈ MX the set m(a) is not connected.
The general formula for the medial axis dimension concludes that in every
neighbourhood of a, a point b of MX must exist with m(b) finite.
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Remark 3.11. The results of this section correspond to ones brought by Am-
brosio, Cannarsa and Soner in [12] for singularities of semi-convex functions.
Their methods concentrated on investigating the set Sk := {x ∈ MX | dim
conv(m(x)) = k}. Localising the study in R

n, they obtained the dimension for-
mula dim Sk = n−k. In general, no easy transition between Sk and Mk exists.
However, comparing the local dimension formulas, we can derive that for any
a ∈ MX , we necessarily have min{k | a ∈ Sk} = min{k | a ∈ Mk}+1. Further-
more, for a generic point a ∈ MX , we have min{k | a ∈ Sk} = dim m(a) + 1.

4. The frontier of the medial axis

In [15] T.Miura proposed a characterisation of the medial axis boundary for
hypersurfaces. Unfortunately, the introduced notion did not escape flaws. Fore-
most, it does not recognise the studied side of the hypersurface, which may
result in misleading data. In this paper, we provide an improved definition,
resulting in a generalisation of the claims from [15], proved with more straight-
forward reasoning.

To take notice of the direction of open balls used to investigate X ⊂ R
n,

we assume the following definitions. Take any point a ∈ X and write

NaX := {v ∈ R
n | ∀w ∈ CaX, 〈w, v〉 ≤ 0}

to be the normal cone to X at a. Then denote the set of directions normal to
X at a by Va := NaX ∩ S and limiting set of normal directions by

Ṽa := lim sup
aν→a

Vaν
.

Remark 4.1. If a ∈ X is a point of C 1-smoothness, then, of course, the tangent
spaces, and, what follows, the normal spaces are continuous at a. Therefore,
the limiting set of normal directions is just the set of normal directions in such
a case.

Using the introduced sets, for a point a ∈ X we consider the following
definition.

Definition 4.2. For v ∈ Va, we define a directional reaching radius by

rv(a) := sup{t ≥ 0 | a ∈ m(a + tv)}.

Then for v ∈ Ṽa we define a limiting directional reaching radius by

r̃v(a) := lim inf
X�x→a,Vx�vx→v∈Ṽa

rvx
(x),

and finally the reaching radius at a is

r(a) = inf
v∈Ṽa

r̃v(a).

Recall that for any v ∈ NaX, the point a + vrv(a) is the centre of a
maximal (in the sense of inclusion) ball contained in R

n\X. The set of centres
of maximal balls are gathered in a set called the central set of X. It is known
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(cf. [3]) that the central set of a closed set lies between the medial axis of the
set and its closure.

At first glance, the infimum in the definition of the reaching radius might
seem dubious for points with an empty limiting set of normal directions. By
definition of the infimum, we are inclined to posit an infinite value of the
reaching radius for any such point. Luckily, in the o-minimal geometry, the
points with an empty limiting set of normal directions prove to be precisely the
interior points of a given set. Clearly, any interior point has an empty limiting
set of normal directions. Conversely, every boundary point of a definable set
can be reached by the regular part of the boundary. This is a consequence
of the definability of the boundary and the nowhere density of the subset of
singularities. Points of the regular part of the boundary of X have at least one
normal direction. Thus, due to the compactness of the sphere, the limiting set
of normal directions for the boundary points cannot be empty.

Remark 4.3. As is easily seen from their definitions, both r̃v(a) and r(a) are
lower semi-continuous functions. Moreover, for v ∈ Ṽa\Va the limiting direc-
tional reaching radius equals zero.

Recall that RegkX denotes the set of points of X at which it is a C k-
smooth submanifold. Accordingly, the C k-singularities are denoted by SngkX =
X \ RegkX.

The backbone of the just defined reaching radius lies in the same place
as the reaching radius introduced in [3] as

ṙ(a) =

⎧⎨
⎩

r′(a), a ∈ Reg2X,

min{r′(a), lim inf
X\{a}�x→a

r′(a)}, a ∈ Sng2X
,

where

r′(a) = inf
v∈Va

rv(a)

is called weak reaching radius. One can perceive the difference between them as
a sort of an order of taking limits problem. This paper emphasises the medial
axis and a point directional arrangement, whereas Birbrair and Denkowski
focused on their distance. Since the Birbrair–Denkowski reaching radius proved
to be successful in describing MX ∩X, it would be desirable to achieve at least
a type of correspondence between these two notions. Fortunately, as we will
see in Theorem 4.13, the final results of both constructions are equal. For the
sake of the next preparatory proposition, recall that the normal set at a ∈ X
defined in [3] as

N (a) := {x ∈ R | a ∈ m(x)}
is always convex and closed. Moreover, for a subset of a unit sphere A denote
by convS(A) its convex hull in the spherical norm.

Proposition 4.4. For any a ∈ X, the function

ρ : Va � v → ρ(v) = rv(a) ∈ [0,+∞]
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is upper semi-continuous on Va. Furthermore, it is continuous at v ∈ Va,
if there exist r, ε > 0 such that B(v, r) ∩ Va = convS(S(v, r) ∩ Va) and v /∈
ρ−1([0, ε]).

Proof. Observe first that for an empty Va, the function ρ is continuous by
definition. Therefore, assume for the rest of the proof that Va is nonempty.

To prove the upper semi-continuity take v0 ∈ Va and any sequence of
vν → v0. Then, for any r < ρ(vν) the point (a + rvν) lies in N (a). Therefore,
from the closedness of N (a), the point (a + rv) must lie in N (a) for every
r < lim supv→v0

ρ(v) . Moreover, N (a) is convex, so the whole segment [a, a +
rv0] must be a subset of N (a) as well. This inclusion means that ρ(v0) ≥
lim supv→v0

ρ(v).
For the sake of lower semi-continuity, assume that v ∈ Va\ρ−1([0, ε])

for certain ε > 0. Now we can find r > 0 small enough that ρ(w) > ε for
w ∈ S(v, r)∩N (a). Since B(v, r)∩N (a) = convS(v, r)∩N (a), by the convexity
of N (a), the value of ρ(x) for x = tv + (1 − t)w is bounded from below by
tα + (1 − t)ρ(w), for any α < ρ(v). Therefore, at v the function ρ must be
lower semi-continuous. �

Mind that even though the normal set N (a) is convex for any a ∈ X, it
does not necessarily mean that an r > 0 satisfying B(v, r)∩Va = convS(S(v, r)∩
Va) for every v ∈ Va exists. Indeed, only an inclusion from right to left is
automatic. Take, for example, X = {z =

√
x2 + y2}. We can see that V0 =

{z ≤ −
√

x2 + y2} ∩ S, thus for v = (1, 0,−1) and all r > 0, there is B(v, r) ∩
V0 � convS(S(v, r) ∩ Va).

Corollary 4.5. The function ρ : Va � v → ρ(v) = rv(a) ∈ [0,+∞] is continuous
for any a ∈ Reg2X.

Proof. The Corollary follows easily from the fact that MX∩Reg2X = ∅ (widely
known as Nash Lemma). Clearly, there must exist such ε > 0 that ρ(v) > ε
for every v ∈ Va. Furthermore, Va is just an intersection of a unit sphere with
a normal space NaX. Therefore, it is isomorphic to S

dim NaX−1, thus

B(v, r) ∩ Va = convS(S(v, r) ∩ Va)

for any r < 2. �

Whenever the limiting directional reaching radius is positive, it can be
seen as a limiting directional reaching radius transported from a C 1-submanifold
formed in a certain open set by d−1(ε).

Lemma 4.6. For X a closed subset of R
n and ε > 0, denote

Xε := {x ∈ R
n | d(x,X) ≤ ε}.

Then x ∈ MXε if and only if x ∈ MX and d(x,X) > ε.

Proof. Surely x ∈ MXε implies d(x,X) > ε, otherwise x would be a point of
Xε. Furthermore, for any point x ∈ R

n with d(x,X) > ε, there is

d(x,X) = d(x,Xε) + ε.
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Now, for any point x /∈ Xε the set mXε(x) is just mX(x) scaled by a
homothety of ratio d(x,X)−ε

d(x,X) centered at x. Therefore, mXε(x) is a singleton if
and only if mX(x) is one as well. �
Proposition 4.7. Take a ∈ X a point of a closed subset of R

n, v ∈ Va, and ε >
0. Denote by r̃ and r̃ε the limiting reaching radius for X and Xε respectively.
Then r̃v(a) = r̃ε

v(a + εv) + ε whenever r̃v(a) > ε.

Proof. Since r̃v(a) > ε, there exists U—a neighbourhood of (a, v) in

V X := {(x, v) | x ∈ X, v ∈ Vx}
such that for any (x, vx) ∈ U , there is rvx

(x) > ε + δ for a small δ > 0. It
means that for aε := (a + εv), there exists a neighbourhood W in R

n such
that Γ := d−1(ε) ∩ W is a C 1-smooth manifold. Moreover, we have a series of
equalities:

NaεΓ = (TaεΓ)⊥ = (∇d)(aε) · R =
aε − m(aε)

‖aε − m(aε)‖ · R = (aε − a) · R = vR,

which proves that v is a normal vector to Γ at aε. Therefore, it is indeed
possible to calculate r̃ε

v(aε).
According to Lemma 4.6, the medial axes of X and Xε coincide in R

n\Xε.
Therefore, for (x, vx) ∈ U , from x + rvx

(x)vx ∈ MX ∩ (x + vxR) we can easily
derive

x + rvx
(x)vx ∈ MXε ∩ (x + vxR) and ([ε, rvx

(x)) · vx + x) ∩ MXε = ∅.

Thus for (x, vx) ∈ U , there is rvx
(x) = rε

vx
(xε) + ε, where xε := x + εvx, and

rε denotes the directional radius for Γ (an explanation behind vx ∈ Vxε is the
same as for a in the first part of the proof). Furthermore, a sequence of points
(xν , vν) ∈ V X converges to (a, v) if and only if a sequence (xε

ν , vν) ∈ V Γ
converges to (aε, v). Therefore, the appropriate limits in the definition of the
limiting reaching radius are equal. �

The main idea of the limiting directional reaching radius is to provide
a suitable object for generalising the results from [15]. Indeed, the limiting
directional reaching radius can be utilised to describe the frontier of the medial
axis for a broader class of sets. Mind here that in contrast to the results from
previous sections, the following ones do not assume the definability of a set X.

Theorem 4.8. Let X be a closed subset of R
n. Pick x ∈ R

n\(X ∪ MX) and
write m(x) = {a}, v = x−a

‖x−a‖ . Then for x ∈ MX , there is d(x) ≥ r̃v(a). If
additionally, r̃v(a) > 0, then d(x) ≥ r̃v(a) implies x ∈ MX .

Proof. Assume that x ∈ MX\MX and take a sequence of points MX � xν → x.
Since the multifunction m(x) is upper semi-continuous, for an arbitrary choice
of aν ∈ m(xν), we also have aν → a. It of course means that xν − aν → x − a.
Taking vν = xν−aν

‖xν−aν‖ , we obtain by calculating the limiting directional reaching
radius

r̃v(a) ≤ lim inf
ν→∞ rvν

(aν) = lim
ν→∞ d(xν) = d(x).
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We will first prove the remaining part of the theorem with an additional
assumption that X is a C 1-smooth submanifold in the neighbourhood of a.
Assume that r̃v(a) > 0 and x /∈ MX accordingly. We will show that d(x) <
r̃v(a).

At the very beginning, let us recall that outside of MX ∪X, the function
d(x) is of C 1 class. Therefore, we can find ε > 0 small enough that m(x+εv) =
m(x) and a neighbourhood U of xε := (x + εv) such that Γ := d−1(d(xε)) ∩ U
is a C 1-hypersurface disjoint from MX .

Now let us denote by Γ′ the intersection of Γ and (TaX + Rv) translated
by the vector a. The intersection is transversal, as v = ∇d(xε), so Γ′ is a
(dim X)-dimensional C 1-submanifold of R

n. Mind that, in particular, tangent
spaces to X at a and Γ′ at xε are equal.

We claim that there exists an open neighbourhood U ′ of xε such that
m|U ′ ∩ Γ′ is an injection. Suppose otherwise. Then there exists a sequence of
pairs of distinct points xν , yν ∈ Γ′ converging to xε such that m(xν) = m(yν).
Since the multifunction m is univalued in U , we can write

xν − yν

‖xν − yν‖ =
1

‖xν − yν‖ [m(xν) − d(xε)∇d(xν) − (m(yν) − d(xε)∇d(yν))] .

Now, since Γ′ is C 1-smooth, the left-hand side of the equation tends to a vector
in TxεΓ′ = TaX as ν → ∞ (cf. [26]). At the same time, the square bracket on
the right-hand side represents a difference of two vectors in Nm(xν)X, which by
the C 1-smoothness of X must tend to a vector in NaX. This is a contradiction
as the limit cannot be equal to zero. Therefore, the claim is proved.

Now, Brouwer Domain Invariance theorem asserts that m|U ′ ∩ Γ′ is a
homeomorphism. Thus, m(U ′ ∩ Γ′) is an open neighbourhood of a in X.
Moreover, for b ∈ m(U ′ ∩ Γ′), we have found the normal vectors ηb such
that rηb

(b) > d(xε) = d(x) + ε and ηb → v (b → a). What is more, since
r̃v(a) > 0, all directional radii are continuous in a neighbourhood of (a, v).
Since U ′ ∩ MX = ∅, this means that d(x) < r̃v(a).

For a /∈ Reg1X, observe that for a positive ε < r̃v(a), there exists a
neighbourhood of (a+εv) such that d−1(ε) is a C 1-submanifold of R

n. In such
a case the distance d(x,X) equals d(x, d−1(ε)) + ε, and the medial axis MX

coincides with Md−1(ε) in a certain neighbourhood of x. Moreover, for (aν , vν)
sufficiently close to (a, v) the directional reaching radius rvν

(aν) calculated for
X equals the directional reaching radius rvν

(aν +εvν)+ε computed for d−1(ε).
Therefore, we can apply the result for C 1-submanifolds to d−1(ε) to obtain
the assertion. �

In comparison to Miura’s results, the main asset of the reaching radius-
based approach is a lack of non-spreading normal cones of X or the graph
structure of X assumption. This generalisation gives a significantly broader
application potential (Fig. 7).

Example. (Chazal, Soufflet [9]) Consider

X := ∂
(
B((0, 0, 2), 2) ∪ {x > 0, y2 + (z − 1)2 < 1}) ⊂ R

3.
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Figure 7. A The intersection of Γ and TaX + Rv from The-
orem 4.8 is transversal. Hence the result forms a submanifold
of dimension dima X. B The example by Chazal and Soufflet.
Mark that, apart from the sphere’s centre, the points above
the origin do not belong to the medial axis of X

Then, for any point xt = (0, 0, t) with t ∈ [1, 2), there is m(xt) = {0}. At
the same time, r̃v(0) ≤ limn→∞ rv((1/n, 0, 0)) = 1 where v = xt

‖xt‖ . Due to
Theorem 4.8, there is xt ∈ MX\MX .

Remark 4.9. Theorem 4.8 can be further generalised with virtually no change
in the proof if we observe that only the existence of a neighbourhood U of
x yielding a positive limit inferior of directional radii taken by the sequences
in m(U) is needed. With this approach, one can omit sequences of points
that do not contribute actively to MX near x (cf. the origin point of X =
{(y − x2)(y − 2x2) = 0} and v = (0, 1)).

Remark 4.10. Theorem 4.8 deserves an exposition in correspondence with our
study of the tangent cone of the medial axes. Namely, for any a ∈ X, v ∈ Va

we always have

[a + r̃v(a), a + rv(a)] ⊂ MX .

Even though the diameter of m(x) usually is not separated from zero in the
neighbourhood of the medial axis boundary, for all x in an open segment
(a + rv(a), a + r̃v(a)), we are able to find a line vR in CxMX . Stretching a
little the definition of the medial axis for a single point on a sphere by putting
M{v} := {−v}, we can observe a Theorem 2.7 type inclusion for points on the
medial axis frontier.

As an example of an application of Theorem 4.8, we will prove a new
result on the Birbrair–Denkowski reaching radius.

Proposition 4.11. The weak reaching radius is continuous on Reg2X.
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Proof. Take a ∈ Reg2X. We will prove

lim sup
X\{a}�x→a

r′(x) ≤ r′(a) ≤ lim inf
X\{a}�x→a

r′(x).

The function ρ(v) = rv(a) is continuous on a compact set Va, therefore
there exists v ∈ Va with

rv(a) = r′(a).

Mind that, due to the smoothness class of X at a, for any sequence
X � xν → a, there exists a sequence of normal directions vν ∈ Vxν

convergent
to v. Now for any such sequence with r′(xν) convergent to a certain r and
vν ∈ Vxν

convergent to v, we have

m(xν + vνr′(xν)) � xν

and

xν + vνr′(xν) → a + vr.

From the upper semi-continuity of m, we derive

{a} = lim
ν→∞{xν} ⊂ lim sup

ν→∞
m(xν + vνr′(xν)) ⊂ m(a + vr).

Thus, a ∈ m(a + vr), and consequently r ≤ rv(a), which proves

lim sup
X\{a}�x→a

r′(x) ≤ r′(a).

For the second inequality, write d = dima X and take g a local parametri-
sation of X at a. That is, an immersion g : (G, 0) → (V ∩ X, a) of C 2 class
with G,V open subsets of R

d, Rn, respectively.
Since V is open and m(x) is upper semi-continuous, for any positive

r < r′(a) and v ∈ Va there exists U an open neighbourhood of a + rv such
that m(U) ⊂ V . By summation, we can assume that (a + rv) ∈ U for all
r ∈ [0, r′(a)).

Consider now

F : U × G � (x, t) →
(〈

x − g(t),
∂g

∂ti
(t)

〉)d

i=1

∈ R
d.

The function F is C 1-smooth, and since { ∂g
∂ti

(t)} forms a base of Tg(t)X, there
is

F (x, t) = 0 ⇐⇒ x − g(t) ∈ Ng(t)X.

In particular, that brings F (a + rv, 0) = 0. Our goal now is to use the implicit
function theorem to prove that a + rv is separated from the medial axis. Even
though the determinant det ∂F

∂t (a + rv, 0) is not easily calculable, it is still a
polynomial with respect to r and

det
∂F

∂t
(a, 0) = (−1)d

∑ (
det

∂(gi1 , . . . , gid
)

∂t
(0)

)2

�= 0;

hence it has only a finite number of zeros. Because of that, we can find r
arbitrary close to r′(a) with det ∂F

∂t (a + rv, 0) �= 0. Thus, from the implicit
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function theorem, there must exist W × T ⊂ U × G a neighbourhood of (a +
rv, 0) and a C 1-smooth function τ : W � x → τ(x) ∈ T such that

(F (x, t) = 0 and (x, t) ∈ W × T ) ⇐⇒ t = τ(x).

That means g(τ(x)) is a continuous selection from m(x) on W . Thus, m(x) is
univalent on W , and as a consequence, a + rv is separated from MX . From
Theorem 4.8, we obtain r̃v(a) > d(a + rv) = r, therefore

∀v ∈ Ṽa = Va : r̃v(a) ≥ r′(a).

Take now a sequence X � xν → a with

lim
ν→∞ r′(xν) = lim inf

X\{a}�x→a
r′(x)

and a sequence of normal directions vν ∈ Vxν
satisfying rvν

(xν) = r′(xν).
Assuming without loss of generality that {vν} is convergent to some vector
v ∈ Va, we have then

lim inf
X\{a}�x→a

r′(x) = lim
ν→∞ r′(xν) = lim

ν→∞ rvν
(xν) ≥ r̃v(a) ≥ r′(a).

�

Remark 4.12. Proposition 4.11 not only provides insights about continuity of
Birbrair–Denkowski reaching radius. What is more, it simplifies the very defi-
nition of the Birbrair–Denkowski reaching radius by taking directly

ṙ(a) = lim inf
X�x→a

r′(x).

Theorem 4.13. For any a ∈ X, the Birbrair–Denkowski reaching radius at a
is equal to r(a).

Proof. Should r′(x) ≡ ∞ in a certain neighbourhood of a, then all the di-
rectional reaching radii are infinite. In that case, all the directional limiting
reaching radii at a are infinite. Thus, both reaching radii r(a) and ṙ(a) equal
infinity as well. Therefore, for the rest of the proof, we can assume that there
exists a sequence of points in X convergent to a with a finite weak reaching
radius.

Take any sequence {xν} ⊂ X convergent to a with weak reaching radii
convergent to ṙ(a). For every ν ∈ N, take a sequence of vν

μ ∈ Vxν
approximating

(sufficiently quickly) the weak reaching radius, say |rvν
μ
(xν) − r′(xν)| < 2−μ.

Selecting from the sequence {vν
ν} a subsequence convergent to a certain v ∈

Ṽa ⊂ S, we obtain

r̃v(a) = lim inf
X�x→a

Vx�vx→v∈Ṽa

rvx
(x) ≤ lim

ν→∞ rvν
ν
(xν) = ṙ(a).

Of course, the value of r̃v(a) is bigger than or equal to the infimum of the
limiting directional radius over Ṽa. Thus, we obtain

r(a) ≤ ṙ(a).
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Assume now that r(a) < ṙ(a). Mind that, in particular, r(a) < ∞. It is
possible then to choose ε > 0 such that

r(a) + ε < lim inf
x→a

r′(x).

Thus we can find U - such a neighbourhood of a that for any x ∈ U ∩ X,

r(a) + ε/2 < r′(x) ≤ rvx
(x), ∀vx ∈ Vx.

Then by taking a sequence {vν} ⊂ Ṽa realising an infimum in the definition of
r(a), we obtain for x close enough to a

r̃vν
(a) = lim inf

X�x→a
Vx�vx→vν∈Ṽa

rvx
(x) > r(a) + ε/2.

By passing with ν to infinity, we obtain a contradiction

r(a) ≥ r(a) + ε/2.

�

Remark 4.14. Theorem 4.13 and Proposition 4.11 give together the continuity
of the reaching radius on Reg2X.
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