1,982,340 research outputs found
Social Deprivation and Digital Exclusion in England
Issues of digital exclusion are now increasingly considered alongside those of material deprivation when formulating interventions in neighbourhood renewal and other local policy interventions in health, policing and education. In this context, this paper develops a cross classification of material deprivation and lack of digital engagement, at a far more spatially disaggregate level than has previously been attempted. This is achieved my matching the well known 2004 Index of Multiple Deprivation (IMD) with a unique nationwide geodemographic classification of access and use of new information and communications technologies (ICTs), aggregated to the unit postcode scale. This ‘E-Society’ classification makes it possible for the first time to identify small areas that are ‘digitally unengaged’, and our cross classification allows us to focus upon the extent to which the 2004 summary measure of material deprivation in England coincides with such lack of engagement. The results of the cross classification suggest that lack of digital engagement and material deprivation are linked, with high levels of material deprivation generally associated with low levels of engagement with ICTs and vice versa. However, some neighbourhoods are ‘digitally unengaged’ but not materially deprived, and we investigate the extent to which this outcome may be linked to factors such as lack of confidence, skills or motivation. Our analysis suggests that approximately 5.61 million people in England are both materially deprived and digitally unengaged. As with material deprivation, there are distinctive regional and local geographies to digital unengagement that have implications for digital policy implementation
Perceptual-based textures for scene labeling: a bottom-up and a top-down approach
Due to the semantic gap, the automatic interpretation of digital images is a very challenging task. Both the segmentation and classification are intricate because of the high variation of the data. Therefore, the application of appropriate features is of utter importance. This paper presents biologically inspired texture features for material classification and interpreting outdoor scenery images. Experiments show that the presented texture features obtain the best classification results for material recognition compared to other well-known texture features, with an average classification rate of 93.0%. For scene analysis, both a bottom-up and top-down strategy are employed to bridge the semantic gap. At first, images are segmented into regions based on the perceptual texture and next, a semantic label is calculated for these regions. Since this emerging interpretation is still error prone, domain knowledge is ingested to achieve a more accurate description of the depicted scene. By applying both strategies, 91.9% of the pixels from outdoor scenery images obtained a correct label
Pure phase-encoded MRI and classification of solids
Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids
Learning Multi-Scale Representations for Material Classification
The recent progress in sparse coding and deep learning has made unsupervised
feature learning methods a strong competitor to hand-crafted descriptors. In
computer vision, success stories of learned features have been predominantly
reported for object recognition tasks. In this paper, we investigate if and how
feature learning can be used for material recognition. We propose two
strategies to incorporate scale information into the learning procedure
resulting in a novel multi-scale coding procedure. Our results show that our
learned features for material recognition outperform hand-crafted descriptors
on the FMD and the KTH-TIPS2 material classification benchmarks
Programmable Spectrometry -- Per-pixel Classification of Materials using Learned Spectral Filters
Many materials have distinct spectral profiles. This facilitates estimation
of the material composition of a scene at each pixel by first acquiring its
hyperspectral image, and subsequently filtering it using a bank of spectral
profiles. This process is inherently wasteful since only a set of linear
projections of the acquired measurements contribute to the classification task.
We propose a novel programmable camera that is capable of producing images of a
scene with an arbitrary spectral filter. We use this camera to optically
implement the spectral filtering of the scene's hyperspectral image with the
bank of spectral profiles needed to perform per-pixel material classification.
This provides gains both in terms of acquisition speed --- since only the
relevant measurements are acquired --- and in signal-to-noise ratio --- since
we invariably avoid narrowband filters that are light inefficient. Given
training data, we use a range of classical and modern techniques including SVMs
and neural networks to identify the bank of spectral profiles that facilitate
material classification. We verify the method in simulations on standard
datasets as well as real data using a lab prototype of the camera
- …
