801 research outputs found

    Near-optimal irrevocable sample selection for periodic data streams with applications to marine robotics

    Full text link
    We consider the task of monitoring spatiotemporal phenomena in real-time by deploying limited sampling resources at locations of interest irrevocably and without knowledge of future observations. This task can be modeled as an instance of the classical secretary problem. Although this problem has been studied extensively in theoretical domains, existing algorithms require that data arrive in random order to provide performance guarantees. These algorithms will perform arbitrarily poorly on data streams such as those encountered in robotics and environmental monitoring domains, which tend to have spatiotemporal structure. We focus on the problem of selecting representative samples from phenomena with periodic structure and introduce a novel sample selection algorithm that recovers a near-optimal sample set according to any monotone submodular utility function. We evaluate our algorithm on a seven-year environmental dataset collected at the Martha's Vineyard Coastal Observatory and show that it selects phytoplankton sample locations that are nearly optimal in an information-theoretic sense for predicting phytoplankton concentrations in locations that were not directly sampled. The proposed periodic secretary algorithm can be used with theoretical performance guarantees in many real-time sensing and robotics applications for streaming, irrevocable sample selection from periodic data streams.Comment: 8 pages, accepted for presentation in IEEE Int. Conf. on Robotics and Automation, ICRA '18, Brisbane, Australia, May 201

    Marine Robotics Centre

    Get PDF

    Cooperative Robotics in Marine Monitoring and Exploration

    Get PDF
    Marine robotics play a great role in modern exploration of marine environments. The Laboratory for Underwater Systems and Technologies of the Faculty of Electrical Engineering and Computing of the University of Zagreb is involved in marine robotics research and is currently participating in a number of marine robotics related projects. This paper addressed the issue of using multiple cooperative marine robots (surface and underwater) for marine monitoring and exploration within the scope of CroMarX project. The project brings a new dimension to marine monitoring and exploration by introducing cooperative marine robots that increase operational efficiency. The main objective of the CroMarX project is to investigate and develop cooperative control algorithms in the area of marine robotics, taking into account both unmanned surface marine vehicles (USVs) and an unmanned underwater vehicle (UUV) for the purpose of marine monitoring and exploration

    Identification of Risks in the Course of Managing the Deep Sea Archeological Projects Using Marine Robotics

    Get PDF
    An analysis is conducted of the basic risks that occur when managing the projects of deep-sea archeological research. It is proposed to consider possible risks of such projects in the form of a general set of risks that contains subsets of the identified and unidentified risks. Based on the generalization of existing experience of conducting underwater archaeological research and with regard to the peculiarities of their execution by using TV-controlled unmanned underwater vehicles, the main risks of such operations are identified. A classification of risk factors is proposed, which takes into account weather and hydrological conditions in the area of operations, peculiarities of the underwater situation, technological and technical provision of underwater archaeological research, possible obstacles from the navigation in the explored area and errors in geographical coordinates of fulfilled work, as well as the human factor. Additionally, environmental, organizational and financial risks, which the project team is aware of, are defined as directly related to planning the projects of deep-sea archeological research. A generalized risk register is developed of the projects\u27 deep-sea archaeological studies as theoretical foundation for designing the models of risk management and their quantitative evaluation when planning financial and temporal resources for such projects

    ISME research trends: Marine robotics for emergencies at sea

    Get PDF
    One of the main recent research trends of the Italian Interuniversity Research Center on Integrated Systems for Marine Environment (ISME) is the use of marine cooperative teams of autonomous robots within the fields of security, prevention and management of emergencies at sea. Such fields are of worldwide interest for obvious reasons, but they have recently gained relevance in the current historical moment, especially in the Mediterranean sea. Within such a dramatic context, the use of robots could certainly provide helpful for the execution of patrolling and detection, identification and classification of interesting elements, such as people to be saved or oil leaks, as well as the successive execution of the intervention/rescue strategy. This paper presents the Key Enabling Technologies as well as some Key Research Areas that are being currently investigated by ISME toward the ambitious objective of employing robotic solutions for the management of emergencies at sea
    corecore