809 research outputs found

    Adaptive Online Prediction by Following the Perturbed Leader

    Full text link
    When applying aggregating strategies to Prediction with Expert Advice, the learning rate must be adaptively tuned. The natural choice of sqrt(complexity/current loss) renders the analysis of Weighted Majority derivatives quite complicated. In particular, for arbitrary weights there have been no results proven so far. The analysis of the alternative "Follow the Perturbed Leader" (FPL) algorithm from Kalai & Vempala (2003) (based on Hannan's algorithm) is easier. We derive loss bounds for adaptive learning rate and both finite expert classes with uniform weights and countable expert classes with arbitrary weights. For the former setup, our loss bounds match the best known results so far, while for the latter our results are new.Comment: 25 page

    Erlang loss bounds for OT-ICU systems

    Get PDF
    In hospitals, patients can be rejected at both the operating theater (OT) and the intensive care unit (ICU) due to limited ICU capacity. The corresponding ICU rejection probability is an important service factor for hospitals. Rejection of an ICU request may lead to health deterioration for patients, and for hospitals to costly actions and a loss of precious capacity when an operation is canceled.\ud There is no simple expression available for this ICU rejection probability that takes the interaction with the OT into account. With c the ICU capacity (number of ICU beds), this paper proves and numerically illustrates a lower bound by an M∣G∣c∣cM|G|c|c system and an upper bound by an M∣G∣c−1∣c−1M|G|c-1|c-1 system, hence by simple Erlang loss expressions.\ud The result is based on a product form modification for a special OT–ICU tandem formulation and proved by a technically complicated Markov reward comparison approach. The upper bound result is of particular practical interest for dimensioning an ICU to secure a prespecified service quality. The numerical results include a case study.\u

    Erlang loss bounds for OT-ICU systems

    Get PDF

    Erlang loss bounds for OT-ICU systems

    Get PDF

    Bounded Optimal Exploration in MDP

    Full text link
    Within the framework of probably approximately correct Markov decision processes (PAC-MDP), much theoretical work has focused on methods to attain near optimality after a relatively long period of learning and exploration. However, practical concerns require the attainment of satisfactory behavior within a short period of time. In this paper, we relax the PAC-MDP conditions to reconcile theoretically driven exploration methods and practical needs. We propose simple algorithms for discrete and continuous state spaces, and illustrate the benefits of our proposed relaxation via theoretical analyses and numerical examples. Our algorithms also maintain anytime error bounds and average loss bounds. Our approach accommodates both Bayesian and non-Bayesian methods.Comment: In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), 201
    • …
    corecore