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Abstract In hospitals, patients can be rejected at both the operating theater (OT)
and the intensive care unit (ICU) due to limited ICU capacity. The corresponding
ICU rejection probability is an important service factor for hospitals. Rejection of an
ICU request may lead to health deterioration for patients, and for hospitals to costly
actions and a loss of precious capacity when an operation is canceled.

There is no simple expression available for this ICU rejection probability that takes
the interaction with the OT into account. With c the ICU capacity (number of ICU
beds), this paper proves and numerically illustrates a lower bound by an M|G|c|c
system and an upper bound by an M|G|c-1|c-1 system, hence by simple Erlang loss
expressions.

The result is based on a product form modification for a special OT–ICU tandem
formulation and proved by a technically complicated Markov reward comparison ap-
proach. The upper bound result is of particular practical interest for dimensioning
an ICU to secure a prespecified service quality. The numerical results include a case
study.
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1 Introduction

1.1 Motivation

Intensive care units (ICUs) and operating theaters (OTs) are critical components
within hospitals. Patients are admitted to an ICU for intensive care (i.e., monitor-
ing and artificial ventilation), because their vital functions are compromised and their
lives are in danger. They may require an ICU bed directly, or for postoperative care
after an invasive operation. But the ICU can become congested due to limited ca-
pacity (the finite number of beds) and as a result requests for ICU beds have to be
rejected.

Because the OTs and ICUs are among their most expensive resources, hospitals
aim to keep them highly utilized. The drawback of a higher ICU occupancy level
is deterioration of accessibility. Thus the size of an ICU needs to be dimensioned
carefully so as to secure a sufficient service level within budget.

For patients who need direct admission to the ICU (without having first undergone
surgery, mostly emergency patients), the consequences of a rejection are obvious for
both the patients and the hospital. For patients this may lead to further, possibly life-
threatening, delays. For the hospital (or the public health care system) this rejection
may result in additional costs because ad hoc solutions have to be found, such as
transferring a patient who might be less critical to another location.

For patients who need to be admitted to an ICU for postoperative care, the in-
tensive care is often strictly required in conjunction with the operation. Therefore, if
no ICU bed is available, it is common practice not to admit such patients to the OT.
In these cases, the operation is either postponed or canceled, even if the patient is
already present. OT-patients account for a substantial percentage of all ICU patients
(roughly 40% in the case study).

For these patients the consequences are obvious for both the patient and the hos-
pital. Because surgeries that require postoperative ICU care are generally serious,
cancellation may pose a severe health risk or have a major emotional impact. For the
hospital in its turn, the cancellation may lead to an unutilized operating room and
thus a loss of resource capacity, as most of the time it is not possible to start another
operation immediately. Unfortunately, OT and ICU planning generally take place in-
dependently of each other, as surgeons have to schedule elective surgeries well in
advance under the assumption that an ICU bed will be available.

The availability of ICU beds is thus a highly important factor, one that reflects
the service quality of the hospital. Nevertheless, rough aggregate figures in a recent
report for the Dutch Ministry of Health [9] indicated that the rejection percentages are
still substantial, in the order of 10 to 15% (also see Sect. 5). This paper will therefore
focus on this ICU rejection probability, both for patients who require postoperative
care and for patients who enter the ICU directly.

1.2 Literature

Various authors have already argued that the ICU can be seen as a multi-server queue
([8, 14, 15, 17, 19, 23]). More precisely, different standard queueing systems are pro-
posed with both infinite ([14, 23]) and finite capacities ([8, 17, 19]). Some papers
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have paid particular attention to the non-exponential character of ICU sojourn times,
and for example phase type distributions are fitted ([6, 8, 17, 23, 42]). Remarkably,
though, none of these report on the effect of such precise fitting of the sojourn times.
Most notably, in [19], experimental data for the ICU rejection probability were shown
to be reasonably approximated by the loss probability of an M|G|c|c. The approx-
imations show both under- (the majority) and overestimation. A survey of some of
these models can be found in [42]. This reference also includes a double ICU with
overflow. Recently, in [17], the overflow aspect (which is of interest in itself), was el-
egantly addressed by applying a so-called equivalent random method, which is well
known in the queueing and telecommunication literature. The objective of [17] was
to determine the total number of ICU beds required for a particular region. The ob-
jective of determining the number of beds has also been addressed in [5], but was
based on deterministic scheduling and data analysis, and thus without queueing and
rejection phenomena. Reference [20] is of a similar deterministic nature and uses a
multi-mode job-shop model with blocking. Nevertheless, these results do not contain:

• Formal justification for why these standard-type one-dimensional queueing ap-
proximations are accurate (other than by the rough experimental data in [17] and
[19] and simulation support in [17] and [14]).

• Inclusion of the OT and its admission rejection protocol at the OT (in [20], the
coupling of the OT and the ICU is mentioned as being highly important for its
“job-shop” scheduling). For one thing, one might argue that, in practice, OT ar-
rivals are partly scheduled rather than random. In addition, the ICU sojourn times
will generally be shorter for OT patients. Last but not least, it remains uncertain to
which extent a standard (one-dimensional) queueing system is sufficiently repre-
sentative for capturing the interaction between the OT and the ICU.

• Secure bounds for estimating the rejection probability from below or above, or a
discussion as to whether the results give under- or overestimation.

1.3 A complication and objectives

There is one additional complication, both in practice and throughout this study. Even
with the admission rejection protocol at the OT, patients requiring ICU care after an
operation may still find that there is no bed available for one of two reasons:

• An emergency patient might arrive who requires priority over an OT patient with a
reserved bed (due to an extremely critical condition, the impossibility of a transfer,
or legislation).

• An unexpected complication during an operation could mean that the patient re-
quires an ICU bed. Because this would not have been known in advance, no admis-
sion rejection would have taken place and no ICU bed would have been reserved.

For a realistic analysis of the rejection probability, this complication will have to be
incorporated into an OT–ICU model.

Therefore, the main objectives of this paper are:

• To justify the Erlang loss expression as a simple analytical approximation for the
ICU rejection probability for both patients who need direct admission and those
who are admitted through the OT, taking the OT interaction into account.

• To establish a strict lower and upper bound for this probability.
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1.4 Results and outline

In Sect. 2, we argue, and numerically support with the results from a case study,
that the M|G|c|c queue is a reasonable basic queueing model for approximating the
ICU rejection probability. In addition, a coupled OT–ICU tandem queueing system is
presented. This is our system of interest, and is referred to as the original system.

In Sect. 3, the M|G|c|c-approximation is formally justified by an analytical prod-
uct form result for a slightly modified OT–ICU tandem queue. This product form re-
sult implies that the OT and ICU may indeed be analyzed separately. Though strongly
related to results in the queueing network literature, these product form results can
be regarded as new in their specific combined form (as is specified in more detail in
Sect. 3).

In Sect. 4, the product form result from Sect. 3 is used to prove that the ICU
rejection probability for the original OT–ICU system can be bounded from below
and above by M|G|c|c and M|G|c-1|c-1 queues. This proof relies upon application
of an analytical Markov reward comparison approach, adopted from the literature,
and technical verifications (bounding) of so-called bias-terms. These verifications
and the comparison results are themselves of theoretical interest.

In Sect. 5, simulation is used to show these bounds on a numerical basis, and the
practical usefulness of the results for dimensioning an ICU is shown for a case study.
As the assumption of Poisson rather than scheduled arrivals at the OT will lead to a
conservative rejection probability, the M|G|c-1|c-1 upper bound in particular seems
to be of practical interest for securing a guaranteed rejection probability for real-life
OT–ICU practices.

2 Model formulation

In this section we first present some motivational case data. Then, in line with the lit-
erature, we briefly discuss three basic queueing models. Next, a number of properties
are defined to argue a finite tandem queueing model for the OT–ICU system. Finally,
the practical usefulness of the Erlang loss system as an approximation is argued nu-
merically. In Sects. 3 through 5 this usefulness will be supported by formal proofs
and bounds.

2.1 Patient groups and a case study

Patient groups The ICU inflow consists of emergency patients (the majority) and
elective patients, which can be further subdivided into various patient groups. How-
ever, as we are particularly interested in the effect of the limited ICU capacity and
its interaction with the OT, we make a distinction between patients that need to visit
the ICU after having undergone an operation and patients who enter the ICU directly
without having had an operation. These patients will be referred to respectively as:

• OT (or type 1) patients
• Direct (or type 2) patients
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The distinction between type 1 and type 2 patients will also be kept explicit at the
ICU itself for two reasons: first, to make explicit the influence of direct patients on
the OT and ICU patients, and second, because their average sojourn times in the ICU
are significantly different.

Case study Data for a case study were collected over a one year period. The case
study was done in the Groot Ziekengasthuis (GZG) in ’s-Hertogenbosch, the Nether-
lands, and included data for the year 2005. It showed that a substantial portion of the
patients admitted to the ICU were OT patients. The percentages of type 1 and type 2
patients were 39% and 61% respectively. The overall average sojourn time spent in
the ICU was 5.2 days, roughly 4.0 days for type 1 patients and 6.0 days for type 2
patients. The average duration of an operation for type 1 patients was 4.0 hours. Other
numbers for the case study were:

• OT capacity (number of operating rooms): 8,
• ICU capacity (number of beds): 12,
• ICU offered load: 85%.

Remark 1

1. The offered load of 85% is used rather fictitiously as a rough estimate. In prac-
tice there are only measurements on occupancy level, which exclude the rejected
patients from the offered load. Measurements on rejections are available only oc-
casionally, because attempts are usually made to find ad hoc solutions such as
pre-discharges or transfers. These actions are not always registered, and certainly
not as rejections.

2. Clearly, the number of operating rooms in use is not always fixed.

2.2 Basic queueing models

Poisson arrivals It is assumed that patients arrive at the ICU according to a Poisson
flow process. For emergency patients the Poisson assumption seems highly justified
by the fact that these patients arrive independently and “at random” (except for oc-
casional accidents involving more than one person). For elective patients one might
state that the Poisson process is not an appropriate assumption because arrivals are
planned. But, seeing that OT planning is generally done without taking the availabil-
ity of ICU capacities into account, it can be reasonably argued that these patients
arrive independently at the ICU as well. A similar argument can be found in [17]:
“However, a surgeon is not aware of the occupation of the ICU when planning oper-
ations. As only a fraction of 5% of operated patients require intensive care after the
operation, the assumption of Poisson arrivals is reasonable.” Furthermore, last-minute
changes are frequently made to the OT schedule.

Basic queueing models As a first-order approximation for evaluating the ICU re-
jection probability, it seems quite natural and plausible to simply regard the ICU in
isolation. More specifically, as a “standard” multi-server queueing system, ignoring
the link between the OT and ICU. Although several models have been suggested,
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they have not been compared in the literature ([8, 14, 15, 17, 19, 23]). In [37] we
examine and argue which of these queueing models for the ICU in isolation seems
most realistic for estimating the rejection probability due to a limited ICU capacity
(with c the number of ICU beds):

• an M|G|c|∞ queue,
• an M|G|∞|∞ queue,
• an M|G|c|c queue.

In [37] we argued, and numerically illustrated, that the M|G|c|c system (in line with
the literature) seems to be by far the best simple queueing approximation of the ICU-
rejection probability. But the question remains as to whether this assertion also holds
true and can be formally justified when the OT is included. This question will be the
main focus of Sect. 3.

2.3 The OT–ICU tandem model

A more extensive model was formulated to study the ICU-rejection probability at a
more realistic level. This model, which incorporates the OT and its interaction with
the ICU, is presented below and will be referred to as the original model throughout
this paper.

For both OT patients and direct patients, we are interested in the probability of
all ICU beds being occupied, when such a bed is requested (i.e., the ICU rejection
probability). Initially, one might regard the ICU in isolation, as described in Sect. 2.2
and numerically illustrated in [37]. This has some modeling discrepancies.

First of all, an OT patient who requires an ICU bed after surgery cannot simply
be rejected if no such bed is available. Therefore, it is common practice not even to
admit such patients to the OT if no ICU bed is available. The rejection of OT patients
thus takes place at the OT rather than at the ICU. Clearly, under a Poisson arrival
assumption of OT patients, the PASTA (Poisson arrivals see time averages) property
might be recalled. Due to the interaction between the OT and ICU, it no longer seems
justified to regard the ICU as a standard loss queue for an OT patient whose operation
has been completed and who is kept “on hold” in the recovery room until an ICU bed
becomes available.

Furthermore, even under a Poisson assumption for the arrival process at the OT,
the flow of OT patients from the OT into the ICU is no longer Poisson. Thus, a model
that contains both the OT and ICU is required so as to capture the interaction between
these two. A tandem model is therefore proposed (see Fig. 1).

Modeling assumptions We use the following modeling assumptions. In [37] each of
these assumptions has been argued and justified by simulation as being quite reason-
able for practical modeling. The exponentiality assumptions (4) and (5) in particular
have been shown to be reasonable, because the ICU rejection probability (not the
total delay, of course) appears to be “nearly” insensitive.

(1) Patients who do not require an ICU bed are not included.
(2) A Poisson arrival rate λ1 of OT patients (type 1) at the OT.
(3) A Poisson arrival rate λ2 of direct patients (type 2) at the ICU.
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Fig. 1 Tandem model OT–ICU

(4) An exponential service time for surgery at the OT with parameter μ1.
(5) An exponential sojourn time at the ICU with parameter μ21 for type 1 patients

and μ22 for type 2 patients. Let τi = (μ2i )
−1.

(6) The OT has c1 identical operating rooms with an infinite waiting facility; the ICU
has a limited capacity for a maximum of c2 patients and no waiting facility.

In addition to these assumptions, blocking protocol properties were defined that
uniquely specify the dynamics of the system, so as to model realistic practice in the
best possible manner. The “realistic” assumption (8) is an essential complicating fac-
tor for our analysis. The following blocking protocol is defined in the original system
when all of the ICU beds are occupied:

(7) Type 1 patients are rejected upon arrival at the OT.
Type 2 patients are rejected upon arrival at the ICU.

(8) An ongoing operation is continued. Upon completion of an operation, the patient
is kept in the OR (recovery room) and that operating room is suspended; that is,
when the OR (or recovery room) is occupied, no new patient is brought in for
surgery until an ICU bed is available again and the recovery room is idled.
When all ICU beds become occupied due to a completed operation, it is still
possible to start a new operation in the OR that has become available for a patient
who has already been accepted and is waiting.

No analytical solution For the original system described above, no analytical so-
lution seems to have yet been reported for the joint steady-state probability of the
occupancy levels at the OT and ICU, or, in relation to this for performance measures
such as the ICU rejection probability. Therefore, in the next section we will first argue
and consider a slightly modified description, in which only assumption (8) is modi-
fied. This modification leads to an analytic solution and a justification of an M|G|c|c
model.
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Remark 2 (‘New-operation’ protocol) Alternatively, in (8) we could have assumed
that no new operation would be started when completing an operation would lead to a
congested ICU (even though an operating room is available). Both procedures appear
to be used in practice depending on the hospital (and the urgency of the situation). The
present protocol as contained in (8) seems more common, as it fills up the available
capacities and thus progresses the processes as much as is physically feasible.

With reference to Remarks 3, 9, and 12 below, for both protocols the eventuating
Result 1 can be shown to remain identical.

Remark 3 (Reservation of ICU bed) Note that our description does not assume that
an accepted type 1 patient has a reserved ICU bed. Although in practice, such reser-
vations may be made upon starting an operation when the need for postoperative
intensive care is known in advance. However, these reservations can (or might have
to) be violated in specific critical situations (see also Sect. 1.3).

2.4 Comparison of original model and M|G|c|c
The question arises as to what extent an M|G|c|c can provide a good estimate of the
ICU rejection probability of the original model.

As shown in Table 1, simulation results for the OT–ICU tandem system of
interest as described in Sect. 2.3 seem to strongly support the accuracy of an
M|G|c|c-approximation (with c = c2). But despite this numerical evidence, so far
the M|G|c|c-approximation still has the following three shortcomings:

(1) It has no formal justification that takes the OT interaction into account.
(2) It is not clear whether the M|G|c|c-approximation yields a lower or upper bound

for the rejection probability. In fact, the experimental results in [19] are inconclu-
sive. Simulation results (see Table 1) consistently show it to be a lower bound.

(3) Also, with regard to the partial presence of scheduled arrivals in practice, an
upper bound for the ICU blocking probability of the system of interest would
clearly be of more practical interest so as to secure a guaranteed service level.

The remainder of this paper will therefore be involved with each of these aspects,
more specifically:

• Aspect 1 in Sect. 3.
• Aspects 2 and 3 in Sect. 4 on theoretical basis.
• Aspects 2 and 3 in Sect. 5 on numerical basis.

Table 1 The rejection
probability of the M|G|c|c
queue and the simulated original
model

Offered load ICU
( λ1τ1+λ2τ2

c2

)
M|G|c|c Original model

0.70 0.06332 0.06388

0.75 0.08309 0.08349

0.80 0.10465 0.10534

0.85 0.12744 0.12797

0.90 0.15097 0.15170

0.95 0.17479 0.17616

1.00 0.19857 0.19928
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3 Product form OT–ICU modification

As mentioned in Sect. 2.3, there is no known analytical solution for the original OT–
ICU system of interest. However, an Erlang loss system seems to approximate the
ICU rejection probability reasonably well, more precisely, an M|G|c|c queue with
c = c2 the number of ICU beds. (In this section we consistently use c2.)

Let us first provide some formal support for this approximation by slightly mod-
ifying the original system. Under this modification the OT–ICU system is shown to
exhibit a product form solution. Furthermore, based on this modification, the lower
and upper bounds for the ICU rejection probability are concluded and numerically
illustrated in Sects. 4 and 5.

The modified OT–ICU tandem system The modified OT–ICU system is identical to
the original OT–ICU system as described in Sect. 2.3 under the assumptions (1)–
(6) as well as the realistic assumption (7) for the admission rejection at the OT. It
only differs in assumption (8) for its blocking protocol at the OT when the ICU is
congested. The following artificial modification of (8) is made:

(8′) When the ICU becomes congested, ongoing operations are immediately inter-
rupted and no new patient is brought in for surgery. The operations are resumed
as soon as the ICU is no longer congested.

This modification is meant for purely analytical purposes, as will appear below, and
not for realistic modeling. Its influence is expected to be small, as operation durations
are in general substantially shorter than the ICU sojourn times.

For the purpose of the insight, self-containment and its novel interest in and of
itself (see Remark 5 below), in this section we will briefly study this modified OT–
ICU tandem system for exponential sojourn times at the ICU and the simple blocking
structure as used herein. An extension to more complex blocking structures and gen-
eral ICU times can be found in [37].

The system defined by assumptions (1)–(7) and (8′) can be analyzed by studying
the steady-state behavior of the corresponding continuous-time Markov chain. The
following result can then be obtained.

Lemma 1 Let (n1;m1,m2) denote that there are n1 patients at the OT and mi pa-
tients at the ICU of type i (i = 1,2). For the modified OT–ICU system, with

F1(n1) =
n1∏

k=1

[
f1(k)

]−1 =
{ [n1!]−1, n1 ≤ c1,

[c1!c(n1−c1)
1 ]−1, n1 > c1

(1)

a normalizing constant α and m1 + m2 ≤ c2, we have for the steady-state probabili-
ties π(n1;m1,m2):

π(n1;m1,m2) = α F1(n1)

(
λ1

μ1

)n1 1

m1! (λ1τ1)
m1

1

m2! (λ2τ2)
m2 . (2)
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Proof It is sufficient to verify the global balance equation (3) for any state
(n1;m1,m2). As argued below, it will be convenient to order the detailed in- and
outrates as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π(n1;m1,m2)min{n1, c1}μ11(n1>0)1(m1+m2<c2)+
π(n1;m1,m2)m1μ211(m1>0)+
π(n1;m1,m2)m2μ221(m2>0)+
π(n1;m1,m2)λ11(m1+m2<c2)+
π(n1;m1,m2)λ21(m1+m2<c2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

=⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π(n1 − 1;m1,m2)λ1(n1>0)1(m1+m2<c2)+
π(n1 + 1;m1 − 1,m2)min{n1 + 1, c1}μ11(m1>0)+
π(n1;m1,m2 − 1)λ21(m2>0)+
π(n1;m1 + 1,m2)(m1 + 1)μ211(m1+m2<c2)+
π(n1;m1,m2 + 1)(m2 + 1)μ221(m1+m2<c2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.1)′
(3.2)′
(3.3)′
(3.4)′
(3.5)′

(3)

(It is noted that some of the indicator notation and implicit assumptions overlap.
Nevertheless, the indicators are used to keep the ‘boundary aspects’ explicit, as used
below).

The global balance equation (3) is ordered as if it can be decomposed into five
local balances (3.i) = (3.i)′, i = 1, . . . ,5. To this end, first observe that the local bal-
ances (3.1) = (3.1)′, (3.4) = (3.4)′ and (3.5) = (3.5)′ immediately follow in states
for which m1 + m2 = c2, as both the left-hand side and the right-hand side are then
equal to 0. Each of (3.i) = (3.i)′ (i = 1, . . . ,5) can then be verified directly by sub-
stituting (2). �

Expression (2) can be rewritten in an expression for the steady-state distribution
of n1 patients at the OT and m = m1 + m2 at the ICU.

Lemma 2 With

τ =
[

λ1

λ1 + λ2

]
τ1 +

[
λ2

λ1 + λ2

]
τ2 (4)

the mean sojourn time at the ICU, normalizing constant α, and λ = (λ1 + λ2):

π(n;m) = αF(n1)

(
λ1

μ1

)n1 1

m! (λ τ)m, n1 ≥ 0 and 0 ≤ m ≤ c2 (5)

which factorizes in the steady-state distributions for:

• an M|M|c1|∞ queue with arrival rate λ1 and service rate μ1
• an M|G|c2|c2 queue with arrival rate λ and mean service time τ .

The ICU rejection probability for patients of both type 1 (at the OT) and type 2 (at
the ICU) is thus determined by the Erlang loss expression, with c = c2 servers.

Proof The proof is directly seen by summing over all possible values of m1 and m2
with m = m1 + m2 and noting that also the normalizing constant can be factorized in
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α = α1 · α2, with α1 and α2 the normalizing constants for two separate queues as if
in isolation. �

Remark 4 (Insensitivity) The product form expression (5) can already be regarded as
a first illustration of insensitivity in that it only depends on the mean arrival rate and
the mean sojourn time at the ICU, and not on the specific values for each patient type
separately.

Remark 5 (Literature) Though related to results in the literature, as will be specified
in more detail below, even in this exponential case expression (2) (and its conse-
quence (5)) can be regarded as “new” because it includes and combines

• a non-reversible routing with blocking and
• multiple job-types.

More precisely, the classical product form papers [2, 4] and [3] do include multiple
job-types but without any form of service or arrival blocking. Product form results for
queueing networks with finite capacity constraints (and thus blocking) are also well
known, among which by the famous book [13] and in relation to this, by [7, 16] or
[21]. But the blocking results in these references rely upon the restrictive condition
of a reversible routing. This condition is necessarily violated by the serial routing
of a tandem system. For the situation of a single job-class, the present product form
can directly be concluded from [10] or [34]. (In fact, in the latter references and
[38], arrivals are artificially blocked when the second service station is congested
to provide an easily computable performance bound for finite tandem queues. For
the present OT–ICU system, in contrast, this blocking is natural.) The framework
in [11] also allows multiple job-types and non-reversible blocking. But instead it
requires a notion of balance for each job separately (job-local-balance). This notion
is necessarily violated by “first-come, first-served” disciplines as in the first service
station for the OT. Product forms for networks with both first-come, first-served (and
thus non-insensitive) and insensitive (e.g., processor sharing type) disciplines are also
known (e.g., [3]), but again, without blocking. No product form result seems to have
been reported yet that combines these aspects, as in the present case in its specific
form.

4 Lower and upper Erlang loss bounds

The product-form stationary distribution (5) factorizes into two terms that are the
same as we would observe if the OT and ICU queues were fed independently by
Poisson arrival processes with rates λ1 and λ1 + λ2 respectively. For the stationary
measures, it is therefore justified to consider the ICU in isolation as in Sect. 2.2. Of
course, the whole queueing processes at the OT and ICU are clearly not stochastically
independent.

It was also concluded that the M|G|c|c system even provides an exact expression,
although under the modification that OT service is interrupted when the ICU becomes
congested. In the original system, continuing the OT service may put a patient in a
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“waiting” position. Because this patient will immediately re-saturate the ICU when
an ICU bed becomes available, we can expect a lower bound. In contrast, in the
modified system, an OT service has to be completed or a direct arrival has to take
place before the ICU can get congested again. Thus, the original system keeps the
ICU more congested than the modified system. Intuitively this would imply that the
M|G|c|c computation provides a lower bound for the rejection probability. A more
formal support for this intuitive statement would be of some practical interest so as to
be sure that a certain capacity is “insufficient.” For dimensioning purposes, though, it
would be of even more practical interest if we could also provide an upper bound, so
as to secure a sufficiently small rejection probability.

Conversely, it should therefore be noted that the modified OT–ICU tandem system
only differs from the original OT–ICU tandem system for a patient who is undergoing
surgery when the ICU becomes congested. One may expect that the effect of contin-
uing OT service while the ICU is congested can be bounded as if one ICU bed is
permanently reserved for a patient who is being kept “on hold.” In turn, this negative
effect (enlarging the rejection probability) cannot be more than if this patient were to
permanently occupy one of the ICU beds, or if one ICU bed were to be permanently
reserved for such a patient. By this modified system we expect to obtain an upper
bound by an M|G|c-1|c-1 system.

Intuitively, the original system thus seems to be bounded from above and below
by an M|G|c-1|c-1 and M|G|c|c system. One might wonder whether these bounds
can be proven formally, especially since in reality the arrival process of OT patients
is partially scheduled rather than purely random. As a consequence, the rejection
probability can actually be expected to be smaller than that for the original system
in Sect. 3. Thus, a secure upper bound for this original model is of considerable
interest for dimensioning the ICU in such a way that the “real” rejection probability
meets a guaranteed norm. This section provides formal support for these bounds in
the specific exponential case (see Remark 10 on the non-exponential case).

Result 1 (Erlang loss bounds) With

• R the ICU rejection probability upon arrival at the OT for a type 1 patient and at
the ICU for a type 2 patient for the original OT–ICU system as described in Sect. 3,

• B(M|M|c|c) the loss probability of an Erlang loss system with c servers with ar-
rival rate λ = λ1 + λ2 and mean service time τ as by (4),

we have

B(M|M|c|c) ≤ R ≤ B(M|M|c-1|c-1). (6)

Proof By (5) we have: B(M|M|c|c) is given by the Erlang loss expression as based
on the tandem queueing system as described in Sect. 3; that is, with the OT suspended
when the ICU is saturated. We can thus compare the original tandem queue in which
the service (operation) at an OT is first completed before the OT is stopped with
the tandem queue in which the OT is stopped when m1 + m2 = c. We will use the
following abbreviations to refer to these different tandem queues:
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• O(TQ) for the original tandem queue.
• S(TQ)(c) for the tandem queue as in Sect. 3 under the stop protocol with c2 = c

the number of ICU beds.

Remark 6 (Sample path proof) At first glance, a proof based on sample path com-
parison and weak coupling, in line with the intuitive arguments given above and the
literature on stochastic monotonicity (e.g., [1, 12, 18, 25–30, 32, 41]), might seem
appropriate. But for finite tandem queues, as in [40] or [39], one can also give coun-
terintuitive examples by which intuitive and monotonicity results are violated. More
precisely, as shown in [36], Sect. 2.2, monotonicity results for finite tandem queues
can still be proven but not in the direction required for showing an ordering of loss
probabilities as in this article. In addition, the sample paths will not be free of over-
taking, because multiple servers are involved and a distinction has been made be-
tween type 1 and type 2 patients. Patients would thus have to be interchanged sto-
chastically. Finally, such a proof would also have to apply for both exponential and
non-exponential sojourn times. The technical details can therefore be expected to be
highly complicated and have not as yet been established.

Analytical proof by Markov Reward Approach An analytical proof therefore follows
here, one that is based on a Markov Reward Approach (first used in [38] and surveyed
in [35]). To this end, with reference to Remark 10 below, we will limit the proof to
the exponential case. For presentational convenience and without loss of generality,
we also assume there is only one OT (see Remark 8).

Clearly, for the S(TQ)(c) and S(TQ)(c − 1) it suffices to keep track of the state
(n1;m1,m2). For the O(TQ), in contrast, we need to keep track of the status of the
patient who was already in the OT or went into OT service when the ICU became
saturated. To this end, with n1,m1,m2 the numbers as in Sect. 3, let the state be
described by:

(n1;m1,m2) for m1 + m2 < c

(n1, θ;m1,m2) for m1 + m2 = c with
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ = 0 when the OT server is suspended;
θ = 1 when there is one patient at the OT server who is

continuing its OT service;
θ = 2 when there is one patient who has completed its OT

service and is waiting at the OT server for an ICU server
to become available with the OT server suspended.

Remark 7

• At first glance, one might wonder why the states (n1,0;m1,m2) and (n1,1;m1,m2)

with m1 + m2 = c have to be distinguished. Note that a state with θ = 2 can only
be reached out of a state with θ = 1 but not out of a state with θ = 0 as specified
below in (7).

• Note here that the situation θ = 0 arises when a bed in the ICU idles and is im-
mediately occupied by a patient who has completed its OT service and has been
waiting at the OT server, which is out of a state with θ = 2, as also specified in (7).
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• Furthermore, also note that when congestion at the ICU ends (i.e., when m1 + m2

becomes less than c) and when there is no patient who has already completed its
OT service and is waiting at the OT server (i.e., when m1 + m2 < c remains), the
OT server will become operative (will become available and take a new patient into
service when n1 > 0). The state (n1;m1,m2) with m1 + m2 < c can thus always
be implicitly regarded as with θ = 1.

Remark 8 In the case of multiple operating rooms we would need a similar triple
specification θi = 0,1,2 for each operating room i. This would substantially increase
the already heavy notation and verifications later on, without further insights. The
proof is therefore restricted to a single operating room.

Let q denote the corresponding transition rates for the O(TQ). More precisely,
that is:

q[(n1;m1,m2), (n1 + 1;m1,m2)] = λ1, m1 + m2 < c,

q[(n1;m1,m2), (n1;m1,m2 + 1)] = λ2, m1 + m2 + 1 < c,

q[(n1;m1,m2), (n1,1;m1 + 1, c)] = λ2, m1 + m2 + 1 = c,

q[(n1;m1,m2), (n1 − 1;m1 + 1,m2)] = μ1, n1 > 0,m1 + m2 + 1 < c,

q[(n1;m1,m2), (n1 − 1,1;m1 + 1,m2)] = μ1, n1 > 1,m1 + m2 + 1 = c,

q[(n1;m1,m2), (n1 − 1,0;m1 + 1,m2)] = μ1, n1 = 1,m1 + m2 + 1 = c,

q[(n1,1;m1,m2), (n1,2;m1,m2)] = μ1, n1 > 0,m1 + m2 = c,

q[(n1;m1,m2), (n1;m1 − 1,m2)] = m1μ21, m1 + m2 < c,

q[(n1;m1,m2), (n1;m1,m2 − 1)] = m2μ22, m1 + m2 < c,

q[(n1, θ;m1,m2), (n1;m1 − 1,m2)] = m1μ21, m1 + m2 = c, θ = 0,1,

q[(n1, θ;m1,m2), (n1;m1,m2 − 1)] = m2μ22, m1 + m2 = c, θ = 0,1,

q[(n1,2;m1,m2), (n1 − 1,0;m1,m2)] = m1μ21, m1 + m2 = c, θ = 2,

q[(n1,2;m1,m2), (n1 − 1,0;m1 + 1,m2 − 1)] = m2μ22, m1 + m2 = c, θ = 2.

(7)
When convenient, such as for unification, we also use the identifications:

{
(n1;m1,m2) = (n1,1;m1,m2) = (n1, θ;m1,m2) for m1 + m2 < c,
(0;m1,m2) = (0,1;m1,m2) for m1 + m2 = c.

(8)

The state space becomes:

S = {
(n1, θ;m1,m2) | θ = 1 for m1 +m2 < c and θ = 0,1,2 for m1 +m2 = c

}
. (9)

In order to compare the O(TQ) with the S(TQ) systems, we first introduce a
discrete-time cumulative reward structure. (The probability transition matrix P and
the function Vk , as will be defined below, are needed for Result 1 and Lemma 3 below
and its proof.) Let h be a sufficiently small positive number such that

h ≤ [λ1 + λ2 + μ1 + cμ21 + cμ22]−1 (10)

and with the transition rates q as given by (7) and define the one-step transition matrix
P at the same state space S of the O(TQ) by



Queueing Syst (2009) 63: 253–280 267

P
[
(n1, θ;m1,m2); (n1, θ;m1,m2)

′]

=

⎧
⎪⎨

⎪⎩

hq[(n1, θ;m1,m2); (n1, θ;m1,m2)
′]

for (n1, θ;m1,m2)
′ �= (n1, θ;m1,m2),

1 − h
∑

(n1,θ;m1,m2)
′ q[(n1, θ;m1,m2); (n1, θ;m1,m2)

′]
for (n1, θ;m1,m2)

′ = (n1, θ;m1,m2).

(11)

Now for a given reward rate function r at S, define the expected cumulative reward
functions V k at S, for k = 0,1,2, . . . , by

⎧
⎪⎪⎨

⎪⎪⎩

V0(n1, θ;m1,m2) = 0
Vk+1(n1, θ;m1,m2) = hr(n1, θ;m1,m2)

+ ∑
(n1,θ;m1,m2)

′ P [(n1, θ;m1,m2); (n1, θ;m1,m2)
′]

× Vk(n1, θ;m1,m2)
′ for any (n1, θ;m1,m2).

(12)

Then by standard stochastic dynamic programming (e.g., see [22, 31]),
Vk(n1, θ;m1,m2) represents the expected cumulative reward over k steps for the
discrete-time Markov chain with one-step transition matrix P for each step and one-
step reward function hr , as by (an expected) step length of time h. Furthermore, by
virtue of the well-known uniformization method (e.g., [31]),

lim
k→∞ k−1h−1Vk(n1, θ;m1,m2) = G, (13)

where G represents the expected average reward per time unit of the continuous-time
Markov chain at S with transition rates q and reward rate r . More specifically, our
measure of interest, the rejection probability R, is obtained by

{
r(n1, θ;m1,m2) = 1(m1+m2=c),

G = R.
(14)

The following result (Lemma 3) is now adopted from [35], Theorem 2.1, for com-
paring the expected average reward G and Ḡ of two continuous-time ergodic Markov
chains with transition rates q[i, j ] and q̄[i, j ] respectively for a transition from a state
i into another state j �= i, reward rates r and r̄ and abstract state spaces S and S̄, where
it is essential that one state space covers the other, say:

S̄ ⊆ S. (15)

Lemma 3

G ≥ (≤) Ḡ (16)

if for all k and i ∈ S̄:

[r − r̄](i) +
∑

j∈S

[
q[i, j ] − q̄[i, j ]][Vk(j) − Vk(i)

] ≥ (≤) 0. (17)

(As will be essential below, note that we only need to include states j ∈ S for which
q(i, j) > 0 with i ∈ S̄.)
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We apply Lemma 3 for both inequalities in (6), the lower and upper bounds. For
both applications the transition rates q and state space S correspond to those for the
original system O(TQ) as specified by (9). The functions Vk and reward rate r in
(17) are hereby specified by (11)–(13) and G = R.

Lower bound in (6) Here, let the q̄-system in Lemma 3 correspond to the S(TQ)(c)

as described in Sect. 3 and note that the corresponding state space S̄ satisfies (15) if
written as:

S̄ = {
(n1, θ;m1,m2) | θ = 1 for m1 + m2 < c and θ = 0 for m1 + m2 = c

}
. (18)

(In fact, as the configuration (n1;m1,m2) in this case uniquely determines whether
the OT server is operative (θ = 1) or not (θ = 0), in Sect. 3 we simply limited the nota-
tion to: (n1;m1,m2).) Furthermore, by choosing r̄(n1, θ;m1,m2) = r(n1, θ;m1,m2)

as by (14), the average value Ḡ represents the rejection probability in the S(TQ)(c)

system. Hence, by Sect. 3 (Lemma 2):

Ḡ = B(M|G|c|c). (19)

Hence, it suffices to verify (17) with ≥ sign for any (n1, θ;m1,m2) ∈ S̄. By compar-
ing the system behavior of the O(TQ) and S(TQ)(c), we directly conclude that:

q̄
[
(n1, θ;m1,m2); (n1, θ;m1,m2)

′] = q
[
(n1, θ;m1,m2); (n1, θ;m1,m2)

′]

for any

{
(n1, θ;m1,m2) ∈ S̄ with m1 + m2 + 1 < c (hence with θ = 1),
(n1, θ;m1,m2) ∈ S̄ with m1 + m2 = c (hence only with θ = 0)

(20)

and any (n1, θ;m1,m2)
′. Since also r̄ = r , condition (17) is thus trivially satisfied for

all states (n1, θ;m1,m2) ∈ S̄ with m1 + m2 + 1 �= c.
For m1 + m2 + 1 = c (hence with θ = 1), a difference in the dynamics of the

system arises as the OT server continues to work in the O(TQ) while it stops in the
S(TQ)(c) system when the ICU gets congested, so that in state (n1;m1,m2) with
m1 + m2 + 1 = c,

μ11(n1>0) =
{

q[(n1,1;m1,m2); (n1 − 1,1;m1 + 1,m2)],
q̄[(n1,1;m1,m2); (n1 − 1,0;m1 + 1,m2)] (21)

and

λ2 =
{

q[(n1,1;m1,m2); (n1,1;m1,m2 + 1)],
q̄[(n1,1;m1,m2); (n1,0;m1,m2 + 1)]. (22)

As a consequence, for (n1, θ;m1,m2) ∈ S̄ with m1 + m2 + 1 = c, and using again
that r̄ ≡ r , the left-hand side of (17) becomes:
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∑

(n1,θ;m1,m2)
′

[
q
[
(n1, θ;m1,m2); (n1, θ;m1,m2)

′]

− q̄
[
(n1, θ;m1,m2); (n1, θ;m1,m2)

′]]

× [
Vk

(
(n1, θ;m1,m2)

′) − Vk(n1, θ;m1,m2)
]

= 1(m1+m2+1=c)μ11(n1>0)

× [
Vk(n1 − 1,1;m1 + 1,m2) − Vk(n1 − 1,0;m1 + 1,m2)

]

+ 1(m1+m2+1=c)λ2
[
Vk(n1,1;m1,m2 + 1) − Vk(n1,0;m1,m2 + 1)

]
.

(23)

By Lemma 4 below, the right-hand side of equality (23) can be estimated from below
by 0. Hence, by Lemma 3: G ≥ Ḡ, which by (14) and (19) completes the proof of the
lower bound inequality in (6).

Upper bound in (6) Now let the q̄-system in Lemma 3 correspond to the S(TQ)(c−
1) system as also described in Sect. 3, but with c − 1 rather than c ICU beds. The
corresponding state space S̄ could then be given by (18) with c replaced by c − 1.
However, in that case, the inclusion (15) would no longer be satisfied as θ �= 0 for
m1 + m2 = c − 1 in S. Therefore, note that due to the exponential assumption for the
OT server, we can also describe S(TQ)(c − 1) as in Sect. 3 except that the OT server
always continues to operate (i.e., θ = 1) but that a type 1 patient who completes its
OT service has to undergo a new OT service when the ICU is congested, that is, when
m1 + m2 = c − 1. According to this description the transition rates remain equal to
those for the stop protocol in Sect. 3, so that the product form result still applies.
(In fact, more general equivalencies of stop and recirculate protocols can be proven
under product form conditions, as shown in [33].) Now clearly, (15) is satisfied by

S̄ = {
(n1;m1,m2) | m1 + m2 ≤ c − 1

} ⊆ S.

Furthermore, by choosing r̄(n1;m1,m2) = 1(m1+m2=c−1), the average reward per
time unit Ḡ represents the rejection rate of type 1 patients in the S(TQ)(c−1) system.
Hence, by Sect. 3 (Lemma 2):

Ḡ = B(M|G|c − 1|c − 1). (24)

Hence, it suffices to verify condition (17) with ≤ sign for any (n1;m1,m2) ∈ S̄. As
the OT server is also not suspended in the O(TQ) when m1 + m2 = c − 1, we can
now directly conclude that for (n1;m1,m2) ∈ S̄ with m1 + m2 < c − 1:

r̄(n1;m1,m2) = r(n1;m1,m2) and

q̄
[
(n1;m1,m2); (n1;m1,m2)

′] = q
[
(n1;m1,m2); (n1;m1,m2)

′].
(25)

For m1 + m2 = c − 1, however, a difference arises in not only the transition state
rates but also the reward rates, because in the S(TQ)(c−1) system, a rejection reward
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is incurred. More precisely, for m1 + m2 = c − 1:

r(n1;m1,m2) = 0,

r̄(n1;m1,m2) = 1,

q
[
(n1;m1,m2); (n1 + 1;m1,m2)

] = λ1,

q̄
[
(n1;m1,m2); (n1 + 1;m1,m2)

] = 0,

q
[
(n1;m1,m2); (n1,1;m1,m2 + 1)

] = λ2,

q̄
[
(n1;m1,m2); (n1,1;m1,m2 + 1)

] = 0,

q
[
(n1;m1,m2); (n1 − 1,1;m1 + 1,m2)

] = μ11(n1>0),

q̄
[
(n1;m1,m2); (n1 − 1,1;m1 + 1,m2)

] = 0

(26)

so that the left-hand side of (17) becomes:

[
r(n1;m1,m2) − r̄(n1;m1,m2)

]

+
∑

(n1;m1,m2)
′

[
q
[
(n1;m1,m2); (n1;m1,m2)

′] − q̄
[
(n1;m1,m2); (n1;m1,m2)

′]]

× [
Vk((n1;m1,m2)

′) − Vk(n1;m1,m2)
]

= −1(m1+m2=c−1)

+ 1(m1+m2=c−1)λ1
[
Vk(n1 + 1;m1,m2) − Vk(n1;m1,m2)

]

+ 1(m1+m2=c−1)λ2
[
Vk(n1,1;m1,m2 + 1) − Vk(n1;m1,m2)

]

+ 1(m1+m2=c−1)μ11(n1>0)

[
Vk(n1 − 1,1;m1 + 1,m2) − Vk(n1;m1,m2)

]
. (27)

In Lemma 4 below, each of the three difference terms in Vk is non-negative but still
estimated from above by [λ1 + λ2 + μ1]−1. As a consequence, the right-hand side of
(27) can still be estimated from above by 0. Hence, by Lemma 3: G ≤ Ḡ. By (14)
and (24) this completes the proof of the upper bound inequality in (6). �

Lemma 4 With Q = [λ1 +λ2 +μ1]−1, for all states (n1, θ;m1,m2) is such that both
states in the difference term below are contained in S and all t ≥ 0.

With θ = 1 for m1 + m2 < c and θ = 0,1,2 for m1 + m2 = c:

0 ≤ Vt (n1 + 1, θ;m1,m2) − Vt (n1, θ;m1,m2) ≤ Q. (28)

With θ = 1 for m1 + m2 + 1 < c and θ = 0,1,2 for m1 + m2 + 1 = c:

0 ≤ Vt (n1, θ;m1 + 1,m2) − Vt (n1,1;m1,m2) ≤ Q, (29)

0 ≤ Vt (n1, θ;m1,m2 + 1) − Vt (n1, θ;m1,m2) ≤ Q, (30)

0 ≤ Vt (n1 − 1, θ;m1 + 1,m2) − Vt (n1,1;m1,m2) ≤ Q. (31)
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With m1 + m2 = c:

0 ≤ Vt (n1,2;m1,m2) − Vt (n1,1;m1,m2) ≤ Q, (32)

0 ≤ Vt (n1,1;m1,m2) − Vt (n1,0;m1,m2) ≤ Q, (33)

0 ≤ Vt (1,2;m1,m2) − Vt (0,1;m1,m2) ≤ Q. (34)

Proof See the Appendix. �

Remark 9 Under the alternative assumption instead of (8), as in Remark 2, that no
new operation will be started when the ICU has become congested due to the com-
pletion of an operation, the fifth term in (7) will become:

q
[
(n1;m1,m2), (n1 − 1,0;m1 + 1,m2)

] = μ1, m1 + m2 + 1 = c

The right-hand side of (23) then reduces to

1(m1+m2+1=c)μ11(n1>0)

[
Vk(n1 − 1,1;m1 + 1,m2) − Vk(n1 − 1,0;m1 + 1,m2)

]
.

In other words, the second term has vanished. Nevertheless, as shown in the proof of
Lemma 4 in the Appendix, the same inequalities in Lemma 4 will still be required,
due to the interdependencies of the difference terms in (28)–(34) in Lemma 4.

Remark 10 With simulation, the rejection probability appears to be rather insensi-
tive ([37]) and to be well within the Erlang loss bounds (Sect. 5). The simulation
experiments also seem to consistently support the validity of the bounds for the non-
exponential case ([37]). Because the Erlang loss probabilities are insensitive, these
bounds can thus be conjectured to be insensitive as well. To provide a formal proof
for the non-exponential case as well, a proof can be thought of along the lines pre-
sented here and by using phase-type distributions, as in [32]. However, the notation
and technical details will then be substantially more complicated. These details have
not as yet been worked out and as such no formal support has been provided.

5 Numerical results

This section contains numerical support for the results obtained in the previous sec-
tions. First, in Sect. 5.1, the bounds of Result 1 are supported. Next, a dimensioning
application for the case study of Sect. 2.1 is presented.

5.1 Bounds

To support the bounding in Result 1, Table 2 shows numerical results and the com-
parison with simulation for the original OT–ICU system. The situations are within
the range of realistic figures, like recently reported by the Dutch Ministry of Health.
This report states that roughly 10% of patients requesting an ICU bed are rejected
outright, 4% are admitted elsewhere and 3% are admitted because of a pre-discharge
or a transfer. Furthermore, in a recent Dutch study [24], an occupancy level of 75%
is suggested as the norm. Typically, the number of ICU beds is in the order of:
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Table 2 M|G|c|c and M|G|c-1|c-1 bounds and simulated rejection probability

Offered load Number of beds M|G|c|c Original model M|G|c-1|c-1

80% 10 0.12166 0.12256 0.17314

20 0.06441 0.06556 0.08606

30 0.04012 0.04175 0.05225

40 0.02684 0.02865 0.03447

90% 10 0.16796 0.16925 0.22430

20 0.10921 0.11051 0.13623

30 0.08188 0.08476 0.09909

40 0.06537 0.06870 0.07771

• 10–20 With an offered load of roughly 60–80% for small and medium size hospi-
tals.

• 20–40 With an offered load of roughly 80–90% for larger hospitals.

The simulation results consistently support the lower and upper bounds. Particu-
larly for situations with smaller rejection probabilities, say in the order of 5–10%,
as is more natural in larger hospitals that generally have higher occupancy levels,
the bounds might even be regarded as being reasonably accurate (in absolute sense).
The results are useful for practical purposes such as to guarantee a sufficiently small
rejection percentage by the upper bound. But the results might still be of practical
interest for smaller hospitals (which generally have larger rejection probabilities) in
providing a realistic order of magnitude.

(In Table 2, the offered load applies to the original and M|G|c|c model. For the
M|G|c-1|c-1 model, the effective offered load is a factor c

c−1 larger, as the bounds are
to be calculated with the same arrival and service parameters and the M|G|c-1|c-1
has one server less. The occupancies are determined by varying λ1. The operating
and ICU sojourn times are taken from the case study, i.e., Sect. 2.1.)

5.2 Application: case study

To provide an example of the application, a numerical example is shown for the case
study presented in Sect. 2.1. For the case study data, the M|G|c|c and M|G|c -1|c -1
computations (bounds) for varying offered load (by varying arrival rate λ1) lead to
the results shown in Table 3.

For the 85% offered load as measured in practice, the results lead to an upper
bound of 0.172 and lower bound of 0.127 (with simulation result 0.128). Unfortu-
nately, it is infeasible to make a direct comparison with actual practice, as only oc-
casional measurements were available for rejected OT and ICU requests. The limited
availability of measurements seems to be a general problem within hospital practice
(see also Sect. 2.1).

Nevertheless, this high figure was in line with the general perception of the “rejec-
tion” frequency when taking into account all occasions in which ad hoc solutions had
to be organized. The results of Table 3 can be used by the hospital to obtain insight
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Table 3 M|G|c|c and
M|G|c-1|c-1 bounds and
simulated rejection probability
for the case study

Offered load M|G|c|c Original model M|G|c-1|c-1

0.60 0.03127 0.03135 0.05380

0.65 0.04589 0.04634 0.07399

0.70 0.06332 0.06408 0.09657

0.75 0.08309 0.08383 0.12082

0.80 0.10465 0.10525 0.14610

0.85 0.12744 0.12782 0.17183

0.90 0.15097 0.15155 0.19757

Table 4 Dimensioning for
required rejection probability Number of beds Rejection probability

10 0.282

12 0.172

14 0.091

16 0.041

18 0.015

19 0.008

20 0.004

into the influence of considerable changes in arrival rates or ICU sojourn times. With
regard to achieving an acceptable rejection figure, questions can be encountered as
to how much the mean ICU sojourn time should be reduced or how much the arrival
rate could grow given the current ICU capacity.

As a most directly conceivable application of the secure M|G|c-1|c-1 upper bound
computation, given the current offered load, the required number of ICU beds could
be computed to guarantee a specified rejection probability R (see Table 4), such as:

• 16 beds for a maximum of 5%.
• 19 beds for a maximum of 1%.

6 Evaluation

The rejection probability for ICU beds, due to the limited ICU capacity is a factor of
considerable interest within hospitals. It affects both emergency patients who require
intensive care directly and monitoring and patients who have undergone a severe
operation. Although it is a factor that involves high capacity costs, it is also one that
may put lives at risk on a daily basis.

In practice, rejection figures for different types of patients may not be readily avail-
able, because attempts are made to fine ad hoc solutions such as transfer to another
hospital, temporary placement in a medium or regular care facility, or pre-discharge
of a less critical patient. The support this paper provides is twofold:

• In a practical way: by the Erlang loss expression for approximating the ICU rejec-
tion probability at an OT and ICU.



274 Queueing Syst (2009) 63: 253–280

• In a theoretical and practical way: by justifying this expression as an upper (as well
as lower) bound so as to secure a sufficiently low rejection percentage.

As such, it can be regarded as a present-day tribute to Erlang’s pioneering.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Proof of Lemma 4

Proof The proofs for the difference terms (28)–(31) essentially go similarly to those
in [38] (for the single server case) or [40] (for the multi-server case), except that
in these references θ does not appear (or only takes the value θ = 1 as under the
stop protocol, that there are no direct arrivals at the ICU (λ2 = 0) and that there
is no distinction between type 1 and type 2 jobs (patients) at the ICU (station 2)).
However, as the rejection and transition mechanism at the OT (station 1) are only
influenced by the total number of jobs (patients) at station 2: m1 + m2, for fixed
θ = 1, θ = 2 or θ = 0 the steps for the proofs of (28)–(31) are primarily notationally
more complex but essentially similar to those in these references. Only changes of
the extra component θ need to be included. The technical details of these steps for
each of the difference terms in (28)–(31) with θ = 1,2,0 would be (too) lengthy and
cumbersome. Nevertheless:

• for the sake of self-containment,
• to show how the recurrence relations can be derived,
• to illustrate how these three extensions (these θ -values, as well as direct arrivals at

station 2 and type 1 and type 2 distinctions) can be included, and
• to show how the difference terms are related,

we will present the steps and proof for (28) in detail while leaving those for (29)–(30)
to the reader. Those for (32), (33), and (34) will also be given in detail, as these types
of difference terms are new. The proofs all go by induction in t . Clearly, (28)–(34)
hold for t = 0 as V0(·) ≡ 0. Assume that (28)–(34) hold for t = k. Let

�1Vt (n1, θ;m1,m2) = Vt (n1 + 1, θ;m1,m2) − Vt (n1, θ;m1,m2). (35)

Inequalities (28)–(31) We need to verify (28) for t = k + 1. To this end, consider a
state (n1, θ;m1,m2) with θ = 1. Then, by the Markov reward (or dynamic program-
ming) relation (12) with (11) and (7) substituted, we find

Vk+1(n1,1;m1,m2)

= h1(m1+m2=c)

+ hλ11(m1+m2<c)Vk(n1 + 1,1;m1,m2)

+ hλ21(m1+m2<c)Vk(n1,1;m1,m2 + 1)
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+ hμ11(m1+m2<c)1(n1>0)Vk(n1 − 1,1;m1 + 1,m2)

+ hμ11(m1+m2=c)1(n1>0)Vk(n1,2;m1,m2)

+ hm1μ211(m1>0)Vk(n1,1;m1 − 1,m2)

+ hm2μ221(m2>0)Vk(n1,1;m1,m2 − 1)

+ [1 − hλ11(m1+m2<c) − hλ21(m1+m2<c) − hμ11(n1>0) − hm1μ21 − hm2μ22]
× Vk(n1,1;m1,m2) (36)

and similarly

Vk+1(n1 + 1,1;m1,m2)

= h1(m1+m2=c)

+ hλ11(m1+m2<c)Vk(n1 + 2,1;m1,m2)

+ hλ21(m1+m2<c)Vk(n1 + 1,1;m1,m2 + 1)

+ hμ11(m1+m2<c)Vk(n1,1;m1 + 1,m2)

+ hμ11(m1+m2=c)Vk(n1 + 1,2;m1,m2)

+ hm1μ211(m1>0)Vk(n1 + 1,1;m1 − 1,m2)

+ hm2μ221(m2>0)Vk(n1 + 1,1;m1,m2 − 1)

+ [1 − hλ11(m1+m2<c) − hλ21(m1+m2<c) − hμ1 − hm1μ21 − hm2μ22]
× Vk(n1 + 1,1;m1,m2). (37)

Now, in order to compare (36) and (37) pairwise by transition, (36) and (37) are first
slightly rewritten as follows. In (36) we artificially add as well as subtract an extra
term:

hμ11(n1=0)Vk(n1,1;m1,m2)

while in (37) we rewrite the coefficient hμ1 as

hμ1 = hμ11(n1>0) + hμ11(n1=0).

Then by subtracting (36) from (37) and collecting terms transition-wise we obtain:

�1Vk+1(n1,1;m1,m2)

= hλ11(m1+m2<c)�
1Vk(n1 + 1,1;m1,m2)

+ hλ21(m1+m2<c)�
1Vk(n1,1;m1,m2 + 1)

+ hμ11(m1+m2<c)1(n1>0)�
1Vk(n1 − 1,1;m1 + 1,m2)

+ hμ11(m1+m2<c)1(n1=0)

[
Vk(0,1;m1 + 1,m2) − Vk(0,1;m1,m2)

]

+ hμ11(m1+m2=c)1(n1>0)

[
Vk(n1 + 1,2;m1,m2) − Vk(n1,2;m1,m2)

]
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+ hμ11(m1+m2=c)1(n1=0)

[
Vk(1,2;m1,m2) − Vk(0,1;m1,m2)

]

+ hm1μ211(m1>0)�
1Vk(n1,1;m1 − 1,m2)

+ hm2μ221(m2>0)�
1Vk(n1,1;m1,m2 − 1)

+ [1 − hλ11(m1+m2<c) − hλ21(m1+m2<c) − hμ1 − hm1μ21 − hm2μ22]
× �1Vk(n1,1;m1,m2). (38)

Now note that the fourth Vk-difference term between brackets on the right-hand
side of (38) corresponds to the difference in inequality (29) for θ = 1, the fifth to
�1Vk(n1, θ;m1,m2) and thus inequality (28) for θ = 2, and the sixth to inequality
(34). As a consequence, by substituting the lower bound 0 from the induction hy-
pothesis (28), (29), and (34) for t = k, the right-hand side of (38) is estimated from
below by 0, that is �1Vt (n1,1;m1,m2) ≥ 0 for t = k + 1. Similarly, by substituting
the upper bounds Q from (28), (29) and (34) for t = k, and noting that all coefficients
sum up to 1, we also verify �1Vt (n1,1;m1,m2) ≤ Q for t = k + 1. This proves (28)
with θ = 1 for t = k + 1.

Following steps similar to those in (36), (37), and (38), for θ = 2 and thus neces-
sarily m1 + m2 = c, we find:

�1Vk+1(n1,2;m1,m2)

= hm1μ211(m1>0)1(n1>0)�
1Vk(n1 − 1,0;m1,m2)

+ hm2μ221(m2>0)1(n1>0)�
1Vk(n1 − 1,0;m1 + 1,m2 − 1)

+ hm1μ211(m1>0)1(n1=0)�
1[Vk(0,1;m1,m2) − Vk(0,1;m1 − 1,m2)

]

+ hm2μ221(m2>0)1(n1=0)�
1[Vk(0,1;m1 + 1,m2 − 1) − Vk(0,1;m1,m2 − 1)

]

+ [
1 − (hm1μ21 + hm2μ22)(1(n1>0) + 1(n1=0))

]
�1Vk(n1,2;m1,m2) (39)

Hence, by substituting the induction hypotheses (28) and (29) again for t = k, we
also verify (28) for t = k + 1 and θ = 2. Similarly, with θ = 0 and thus necessarily
again m1 + m2 = c,

�1Vk+1(n1,0;m1,m2)

= hm1μ211(m1>0)1(n1>0)�
1Vk(n1,1;m1 − 1,m2)

+ hm2μ221(m2>0)1(n1>0)�
1Vk(n1,1;m1,m2 − 1)

+ [1 − hm1μ21 − hm2μ22]�1Vk(n1,0;m1,m2) (40)

by which (28) is also verified, by using the induction hypothesis, for t = k + 1 and
θ = 0. Accordingly, we have thus proven the induction step for the inequalities (28).
The induction steps for inequalities (29)–(31) follow along similar lines and are left
to the reader. �

Remark 11 Similarly to [38] and [40], the value Q = λ1 + λ2 + μ1 follows from the
inductive verification of difference terms as in (29)–(31), as the throughput rate for
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station 2. (E.g., in [38] in the single-server case a slightly sharper bound Q = 1/μ2
was concluded.)

Inequalities (32)–(34) With m1 + m2 = c and n1 > 0, as in (36), (37) and (38), we
derive for t = k + 1

[
Vk+1(n1,2;m1,m2) − Vk+1(n1,1;m1,m2)

]

= hμ1
[
Vk(n1,2;m1,m2) − Vk(n1,2;m1,m2)

]

+ hm1μ211(n1>0)1(m1>0)

[
Vk(n1 − 1,0;m1,m2) − Vk(n1,1;m1 − 1,m2)

]

+ hm2μ221(n1>0)1(m2>0)

[
Vk(n1 − 1,0;m1 + 1,m2 − 1)

− Vk(n1,1;m1,m2 − 1)
]

+ [1 − hμ1 − hm1μ211(n1>0)1(m1>0) − hm2μ221(n1>0)1(m2>0)]
× [

Vk(n1,2;m1,m2) − Vk(n1,1;m1,m2)
]
. (41)

Here, the first Vk-difference term on the right-hand side is indeed equal to 0 but left
in for clarity of its derivation. The second and third correspond to those in inequality
(31) for θ = 0. Hence, the induction hypotheses (31) for t = k and θ = 0 and (32) for
t = k can be applied to also conclude (32) for t = k + 1.

Similarly, with m1 + m2 = c and n1 > 0, for t = k + 1
[
Vk+1(n1,1;m1,m2) − Vk+1(n1,0;m1,m2)

]

= hμ1
[
Vk(n1,2;m1,m2) − Vk(n1,0;m1,m2)

]

+ hm1μ211(n1>0)1(m1>0)

[
Vk(n1 − 1,0;m1,m2) − Vk(n1,1;m1 − 1,m2)

]

+ hm2μ221(n1>0)1(m2>0)

[
Vk(n1 − 1,0;m1 + 1,m2 − 1)

− Vk(n1,1;m1,m2 − 1)
]

+ [1 − hμ1 − hm1μ211(n1>0)1(m1>0) − hm2μ221(n1>0)1(m2>0)]
× [

Vk(n1,1;m1,m2) − Vk(n1,0;m1,m2)
]
. (42)

So again, the induction step for (33) and t = k +1 could be concluded by substituting
(31) for θ = 0 and t = k in the second and third difference term on the right-hand side
of (42) and (33) for t = k in the fourth, provided also

0 ≤ Vk(n1,2;m1,m2) − Vk(n1,0;m1,m2) ≤ Q. (43)

To conclude the lower bound 0 in (43) we can simply write
[
Vk(n1,2;m1,m2) − Vk(n1,0;m1,m2)

]

= [
Vk(n1,2;m1,m2) − Vk(n1,1;m1,m2)

]

+ [
Vk(n1,1;m1,m2) − Vk(n1,0;m1,m2)

]
(44)
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and use the lower bound 0 from (32) and (33) for t = k (as by induction hypothesis).
To conclude the upper bound Q in (43) we can also write

[
Vk(n1,2;m1,m2) − Vk(n1,0;m1,m2)

]

= [
Vk(n1,2;m1,m2) − Vk(n1,1;m1 − 1,m2)

]

+ [
Vk(n1,1;m1 − 1,m2) − Vk(n1,0;m1,m2)

]
(45)

provided m1 > 0. Hence, by noting that the second difference on the right-hand side
of (45) will be non-positive as by (29) for t = k, and using the upper bound Q from
(29) for t = k for the first difference on the right-hand side, we have also proven (43)
and thus (33) for t = k + 1. (When m1 = 0 and thus m2 > 0 since m1 + m2 = c > 0,
we can rewrite (45) to m2 − 1 and use (30) for t = k.)

Finally, again with m1 + m2 = c, to prove (34) we write

[
Vk+1(1,2;m1,m2) − Vk+1(0,1;m1,m2)

]

= hm1μ211(m1>0)

[
Vk(0,1;m1,m2) − Vk(0,1;m1 − 1,m2)

]

+ hm2μ221(m2>0)

[
Vk(0,1;m1 + 1,m2 − 1) − Vk(0,1;m1,m2 − 1)

]

+ [1 − hm1μ211(m1>0) − hm2μ221(m2>0)]
[
Vk(1,2;m1,m2)

− Vk(0,1;m1,m2)
]
. (46)

Substituting the induction hypothesis for t = k from (29) for θ = 1 and from (34) in
(46) then also proves (34) for t = k + 1. We have thus proven all inequalities (28)–
(34) for t = k + 1. The induction completes the proof of Lemma 4.

Remark 12 (New-operation protocol) Again, with reference to Remark 2, instead of
assuming (8), Lemma 4 remains to be valid under the alternative new operation proto-
col, under which no new operation will be started when the ICU becomes congested
due to a completed operation. However, its technical details and the expressions as in
(36)–(46) are slightly different, as a separate term comes in when m1 + m2 + 1 = c.
Because the steps are identical and the expressions very similar, the details are left to
the reader for this particular case.
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