1,863 research outputs found

    Password Cracking and Countermeasures in Computer Security: A Survey

    Full text link
    With the rapid development of internet technologies, social networks, and other related areas, user authentication becomes more and more important to protect the data of the users. Password authentication is one of the widely used methods to achieve authentication for legal users and defense against intruders. There have been many password cracking methods developed during the past years, and people have been designing the countermeasures against password cracking all the time. However, we find that the survey work on the password cracking research has not been done very much. This paper is mainly to give a brief review of the password cracking methods, import technologies of password cracking, and the countermeasures against password cracking that are usually designed at two stages including the password design stage (e.g. user education, dynamic password, use of tokens, computer generations) and after the design (e.g. reactive password checking, proactive password checking, password encryption, access control). The main objective of this work is offering the abecedarian IT security professionals and the common audiences with some knowledge about the computer security and password cracking, and promoting the development of this area.Comment: add copyright to the tables to the original authors, add acknowledgement to helpe

    Why configuration management is crucial

    Get PDF

    Danger is My Middle Name: Experimenting with SSL Vulnerabilities in Android Apps

    Get PDF
    This paper presents a measurement study of information leakage and SSL vulnerabilities in popular Android apps. We perform static and dynamic analysis on 100 apps, downloaded at least 10M times, that request full network access. Our experiments show that, although prior work has drawn a lot of attention to SSL implementations on mobile platforms, several popular apps (32/100) accept all certificates and all hostnames, and four actually transmit sensitive data unencrypted. We set up an experimental testbed simulating man-in-the-middle attacks and find that many apps (up to 91% when the adversary has a certificate installed on the victim's device) are vulnerable, allowing the attacker to access sensitive information, including credentials, files, personal details, and credit card numbers. Finally, we provide a few recommendations to app developers and highlight several open research problems.Comment: A preliminary version of this paper appears in the Proceedings of ACM WiSec 2015. This is the full versio

    The internet worm

    Get PDF
    In November 1988 a worm program invaded several thousand UNIX-operated Sun workstations and VAX computers attached to the Research Internet, seriously disrupting service for several days but damaging no files. An analysis of the work's decompiled code revealed a battery of attacks by a knowledgeable insider, and demonstrated a number of security weaknesses. The attack occurred in an open network, and little can be inferred about the vulnerabilities of closed networks used for critical operations. The attack showed that passwork protection procedures need review and strengthening. It showed that sets of mutually trusting computers need to be carefully controlled. Sharp public reaction crystalized into a demand for user awareness and accountability in a networked world

    Elevating commodity storage with the SALSA host translation layer

    Full text link
    To satisfy increasing storage demands in both capacity and performance, industry has turned to multiple storage technologies, including Flash SSDs and SMR disks. These devices employ a translation layer that conceals the idiosyncrasies of their mediums and enables random access. Device translation layers are, however, inherently constrained: resources on the drive are scarce, they cannot be adapted to application requirements, and lack visibility across multiple devices. As a result, performance and durability of many storage devices is severely degraded. In this paper, we present SALSA: a translation layer that executes on the host and allows unmodified applications to better utilize commodity storage. SALSA supports a wide range of single- and multi-device optimizations and, because is implemented in software, can adapt to specific workloads. We describe SALSA's design, and demonstrate its significant benefits using microbenchmarks and case studies based on three applications: MySQL, the Swift object store, and a video server.Comment: Presented at 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS

    Hyp3rArmor: reducing web application exposure to automated attacks

    Full text link
    Web applications (webapps) are subjected constantly to automated, opportunistic attacks from autonomous robots (bots) engaged in reconnaissance to discover victims that may be vulnerable to specific exploits. This is a typical behavior found in botnet recruitment, worm propagation, largescale fingerprinting and vulnerability scanners. Most anti-bot techniques are deployed at the application layer, thus leaving the network stack of the webapp’s server exposed. In this paper we present a mechanism called Hyp3rArmor, that addresses this vulnerability by minimizing the webapp’s attack surface exposed to automated opportunistic attackers, for JavaScriptenabled web browser clients. Our solution uses port knocking to eliminate the webapp’s visible network footprint. Clients of the webapp are directed to a visible static web server to obtain JavaScript that authenticates the client to the webapp server (using port knocking) before making any requests to the webapp. Our implementation of Hyp3rArmor, which is compatible with all webapp architectures, has been deployed and used to defend single and multi-page websites on the Internet for 114 days. During this time period the static web server observed 964 attempted attacks that were deflected from the webapp, which was only accessed by authenticated clients. Our evaluation shows that in most cases client-side overheads were negligible and that server-side overheads were minimal. Hyp3rArmor is ideal for critical systems and legacy applications that must be accessible on the Internet. Additionally Hyp3rArmor is composable with other security tools, adding an additional layer to a defense in depth approach.This work has been supported by the National Science Foundation (NSF) awards #1430145, #1414119, and #1012798
    • …
    corecore