2,186,852 research outputs found
Plastic collapse of pipe bends under combined internal pressure and in-plane bending
Plastic collapse of pipe bends with attached straight pipes under combined internal pressure and in-plane closing moment is investigated by elastic–plastic finite element analysis. Three load histories are investigated, proportional loading, sequential pressure–moment loading and sequential moment–pressure loading. Three categories of ductile failure load are defined: limit load, plastic load (with associated criteria of collapse) and instability loads. The results show that theoretical limit analysis is not conservative for all the load combinations considered. The calculated plastic load is dependent on the plastic collapse criteria used. The plastic instability load gives an objective measure of failure and accounts for the effects of large deformations. The proportional and pressure–moment load cases exhibit significant geometric strengthening, whereas the moment–pressure load case exhibits significant geometric weakening
Improved Analysis of Deterministic Load-Balancing Schemes
We consider the problem of deterministic load balancing of tokens in the
discrete model. A set of processors is connected into a -regular
undirected network. In every time step, each processor exchanges some of its
tokens with each of its neighbors in the network. The goal is to minimize the
discrepancy between the number of tokens on the most-loaded and the
least-loaded processor as quickly as possible.
Rabani et al. (1998) present a general technique for the analysis of a wide
class of discrete load balancing algorithms. Their approach is to characterize
the deviation between the actual loads of a discrete balancing algorithm with
the distribution generated by a related Markov chain. The Markov chain can also
be regarded as the underlying model of a continuous diffusion algorithm. Rabani
et al. showed that after time , any algorithm of their
class achieves a discrepancy of , where is the spectral
gap of the transition matrix of the graph, and is the initial load
discrepancy in the system.
In this work we identify some natural additional conditions on deterministic
balancing algorithms, resulting in a class of algorithms reaching a smaller
discrepancy. This class contains well-known algorithms, eg., the Rotor-Router.
Specifically, we introduce the notion of cumulatively fair load-balancing
algorithms where in any interval of consecutive time steps, the total number of
tokens sent out over an edge by a node is the same (up to constants) for all
adjacent edges. We prove that algorithms which are cumulatively fair and where
every node retains a sufficient part of its load in each step, achieve a
discrepancy of in time . We
also show that in general neither of these assumptions may be omitted without
increasing discrepancy. We then show by a combinatorial potential reduction
argument that any cumulatively fair scheme satisfying some additional
assumptions achieves a discrepancy of almost as quickly as the
continuous diffusion process. This positive result applies to some of the
simplest and most natural discrete load balancing schemes.Comment: minor corrections; updated literature overvie
Submodular Load Clustering with Robust Principal Component Analysis
Traditional load analysis is facing challenges with the new electricity usage
patterns due to demand response as well as increasing deployment of distributed
generations, including photovoltaics (PV), electric vehicles (EV), and energy
storage systems (ESS). At the transmission system, despite of irregular load
behaviors at different areas, highly aggregated load shapes still share similar
characteristics. Load clustering is to discover such intrinsic patterns and
provide useful information to other load applications, such as load forecasting
and load modeling. This paper proposes an efficient submodular load clustering
method for transmission-level load areas. Robust principal component analysis
(R-PCA) firstly decomposes the annual load profiles into low-rank components
and sparse components to extract key features. A novel submodular cluster
center selection technique is then applied to determine the optimal cluster
centers through constructed similarity graph. Following the selection results,
load areas are efficiently assigned to different clusters for further load
analysis and applications. Numerical results obtained from PJM load demonstrate
the effectiveness of the proposed approach.Comment: Accepted by 2019 IEEE PES General Meeting, Atlanta, G
Sensitivity Analysis of Steel Box-Section Girders.
The paper deals with the load–carrying capacity stochastic variance based sensitivity analysis of thin–walled box–section girder subjected to pure bending. The lower– and uppe-r-bound load–capacity estimation is performed. The methodology is based on the Monte-Carlo method . The exemplary results are presented in diagrams and pie charts showing the sensitivity of load–capacity to different random input variables. The analysis is focused on the variance of the yield stress of the girder material and girder’s wall thickness. Some final conclusions, concerning an efficiency of the applied models and the sensitivity analysis are derived
Compliance and stress sensitivity of spur gear teeth
The magnitude and variation of tooth pair compliance with load position affects the dynamics and loading significantly, and the tooth root stressing per load varies significantly with load position. Therefore, the recently developed time history, interactive, closed form solution for the dynamic tooth loads for both low and high contact ratio spur gears was expanded to include improved and simplified methods for calculating the compliance and stress sensitivity for three involute tooth forms as a function of load position. The compliance analysis has an improved fillet/foundation. The stress sensitivity analysis is a modified version of the Heywood method but with an improvement in the magnitude and location of the peak stress in the fillet. These improved compliance and stress sensitivity analyses are presented along with their evaluation using test, finite element, and analytic transformation results, which showed good agreement
Load-Aware Modeling and Analysis of Heterogeneous Cellular Networks
Random spatial models are attractive for modeling heterogeneous cellular
networks (HCNs) due to their realism, tractability, and scalability. A major
limitation of such models to date in the context of HCNs is the neglect of
network traffic and load: all base stations (BSs) have typically been assumed
to always be transmitting. Small cells in particular will have a lighter load
than macrocells, and so their contribution to the network interference may be
significantly overstated in a fully loaded model. This paper incorporates a
flexible notion of BS load by introducing a new idea of conditionally thinning
the interference field. For a K-tier HCN where BSs across tiers differ in terms
of transmit power, supported data rate, deployment density, and now load, we
derive the coverage probability for a typical mobile, which connects to the
strongest BS signal. Conditioned on this connection, the interfering BSs of the
tier are assumed to transmit independently with probability ,
which models the load. Assuming - reasonably - that smaller cells are more
lightly loaded than macrocells, the analysis shows that adding such access
points to the network always increases the coverage probability. We also
observe that fully loaded models are quite pessimistic in terms of coverage.Comment: to appear, IEEE Transactions on Wireless Communication
Mechanical analysis of encapsulated metal interconnects under transversal load
Novel insights regarding the ability of encapsulated metal interconnections to deform due to bending are presented. Encapsulated metal interconnections are used as electric conductor or measurement system within a wide range of applications fields, e.g. biomedical, wearable, textile applications. Nevertheless the mechanical analysis remains limited to reliability investigation of these configurations. Different papers and research groups claim that meander-shaped metal interconnections are predisposed for these applications fields due to their deformability while, to the author’s knowledge, no reports are found about this ability.
An analysis based on the work needed to bend interconnections to a certain curvature will be used to compare different interconnection configurations with each other. The experimental as well as the simulation setup is based on PDMS encapsulated PI-enhanced Cu tracks. The results and conclusions are specific for this type of interconnections, but can be extended to a global conclusion about stretchable interconnections.
From the obtained insights it is proven that periodically meander-shaped interconnections need significant less work, up to more than 10 times less, to bend the interconnection to the same curvature compared to straight interconnection lines. Furthermore it shows out, for the meander-shaped interconnection, that per increase of 250µm encapsulation thickness the work raises with a factor 2. For straight interconnection lines the work in function of the encapsulation thickness is limited to 20%/250µm. The bendability of the straight interconnection lines is determined by the shape of the interconnection, where for meandered tracks the encapsulation will determine this factor, for an encapsulation thickness of maximum 1mm. For encapsulations > 1mm, the encapsulation thickness will become the predominant factor which determines the deformability for both interconnection shapes
Recommended from our members
Dynamic load balancing algorithm complexity
This paper presents a theoretical analysis of the asymptotic complexity inherent in a load balancing algorithm in a loosely-coupled network, where processor communication is achieved by message passing. The load balancing complexity depends on the network topology and the overhead of processor communication for each polling strategy. The best, worst, and average case analysis of the load balancing algorithms for the various polling topologies are presented. The polling strategies considered are local, global, and random polling. The complexity is presented as a function of the number of processors in the network
- …
