85 research outputs found

    Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    Get PDF
    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations

    Biology and ecology of the invasive lionfishes, Pterois miles and Pterois volitans

    Get PDF
    The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the U.S. southeast coast, Bermuda, Bahamas, and are becoming established in the Caribbean. While these lionfish are popular in the aquarium trade, their biology and ecology are poorly understood in their native range. Given the rapid establishment and potential adverse impacts of these invaders, comprehensive studies of their biology and ecology are warranted. Here we provide a synopsis of lionfish biology and ecology including invasion chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and control and management. This information was collected through review of the primary literature and published reports and by summarizing current observations. Suggestions for future research on invasive lionfish in their invaded regions are provided

    Biology, ecology, control and management of the invasive Indo-Pacific lionfish: An updated integrated assessment

    Get PDF
    Venomous Indo-Pacific lionfish (Pterois miles and P. volitans) are now established along the Southeast U.S.A. and parts of the Caribbean and pose a serious threat to reef fish communities of these regions. Lionfish are likely to invade the Gulf of Mexico and potentially South America in the near future. Introductions of lionfish were noted since the 1980s along south Florida and by 2000 lionfish were established off the coast of North Carolina. Lionfish are now one of the more numerous predatory reef fishes at some locations off the Southeast U.S.A. and Caribbean. Lionfish are largely piscivores that feed occasionally on economically important reef fishes. The trophic impacts of lionfish could alter the structure of native reef fish communities and potentially hamper stock rebuilding efforts of the Snapper –Grouper Complex. Additional effects of the lionfish invasion are far-reaching and could increase coral reef ecosystem stress, threaten human health, and ultimately impact the marine aquarium industry. Control strategies for lionfish are needed to mitigate impacts, especially in protected areas. This integrated assessment provides a general overview of the biology and ecology of lionfish including genetics, taxonomy, reproductive biology, early life history and dispersal, venom defense and predation, and feeding ecology. In addition, alternative management actions for mitigating the negative impacts of lionfish, approaches for reducing the risk of future invasions, and directions for future research are provided

    Native Predators Do Not Influence Invasion Success of Pacific Lionfish on Caribbean Reefs

    Get PDF
    Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs

    The Role of Citizens in Detecting and Responding to a Rapid Marine Invasion

    Get PDF
    Documenting and responding to species invasions requires innovative strategies that account for ecological and societal complexities. We used the recent expansion of Indo-Pacific lionfish (Pterois volitans/miles) throughout northern Gulf of Mexico coastal waters to evaluate the role of stakeholders in documenting and responding to a rapid marine invasion. We coupled an online survey of spearfishers and citizen science monitoring programs with traditional fishery-independent data sources and found that citizen observations documented lionfish 1–2 years earlier and more frequently than traditional reef fish monitoring programs. Citizen observations first documented lionfish in 2010 followed by rapid expansion and proliferation in 2011 (+367%). From the survey of spearfishers, we determined that diving experience and personal observations of lionfish strongly influenced perceived impacts, and these perceptions were powerful predictors of support for initiatives. Our study demonstrates the value of engaging citizens for assessing and responding to large-scale and time-sensitive conservation problems

    The effect of invasive lionfish on reef fish community structure along the Mesoamerican Barrier Reef

    Get PDF
    Lionfish are invasive predators, native to the Indo-Pacific, assumed to be negatively affecting Caribbean coral reefs. Small-scale studies suggest lionfish can reduce the abundance and diversity of small prey individuals. However, it is unclear whether lionfish predation affects entire reef fish communities. Our goal was to assess the effect of lionfish on coral reef fish communities across a complex reef system. We quantified fish abundance, diversity, and community composition at sixteen reefs along ~250km of the Mesoamerican Barrier Reef in Belize over five years, including the onset of the invasion. Lionfish had no effect on reef fish community structure on our sites in Belize. The effects of lionfish may be density dependent, and current densities in Belize are likely due to a combination of natural factors and lionfish removals. Because current densities have no effect on reef fish communities, additional lionfish removal efforts may not be necessary to prevent impacts.Master of Scienc

    Belize National Lionfish Management Strategy 2019-2023

    Get PDF
    Across the Caribbean, the invasion of red lionfish (Pterois volitans) poses a pervasive threat to marine ecosystems and coastal fishing communities. First recorded in Belize in 2008, lionfish have become well established across the country's entire marine environment. Uncontrolled, invasive lionfish populations disrupt marine food webs, negatively impacting coral reef health and fisheries productivity, thereby undermining the resilience of coral reefs and reef-associated systems to global change.This document describes how to design and implement an integrated approach to lionfish management – incorporating environmental, social and economic wellbeing goals – and provides specific recommendations for the adaptive management of lionfish in Belize

    Ecological Drivers of Invasive Lionfish (Pterois volitans and Pterois miles) Distribution Across Mesophotic Reefs in Bermuda

    Get PDF
    Invasive lionfish (Pterois volitans and P. miles) are now ubiquitous throughout the Caribbean and Western Atlantic on shallow and deep reefs. Recent surveys in Bermuda have revealed dense aggregations of lionfish on mesophotic reefs (60 m depth), yet these densities are not pervasive across reefs at this depth. Using diver-led visual surveys of mesophotic reef sites, this study examines how variations in potential ecological drivers may affect lionfish distribution. Significant correlations of lionfish densities were found with prey fish density and prey fish biomass, where sites with higher abundances of prey fishes have greater densities of lionfish. Furthermore, higher densities of lionfish also correlated significantly with higher juvenile Paranthias furcifer biomass, a preferred prey type for lionfish. Prey fish diversity, on the other hand, was not related to lionfish density, nor did prey fish community composition differ in a way that reflected lionfish distributions. The influence of seawater temperature was found to have the strongest effect on lionfish distribution, where higher lionfish densities were found at sites with lower bottom temperature. However, temperature co-varied with prey fish density, prey fish biomass, and P. furcifer biomass, implying that physical parameters of the environment (i.e., temperature) likely influence ecological parameters (i.e., prey fish abundance), contributing to the structuring of lionfish distributions. We suggest, therefore, that cold-water upwelling currents may be fueling the food chain in certain locations, resulting in high abundances of prey fishes and thus lionfish. Understanding the factors that influence lionfish distributions will ultimately increase the efficacy of management strategies, which, as the data presented here suggest, must incorporate mesophotic lionfish populations
    • …
    corecore