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ABSTRACT 

Serena Hackerott: The effect of invasive lionfish on reef fish community structure along the  

Mesoamerican Barrier Reef 

(Under the direction of John F. Bruno) 

 

Lionfish are invasive predators, native to the Indo-Pacific, assumed to be negatively 

affecting Caribbean coral reefs. Small-scale studies suggest lionfish can reduce the 

abundance and diversity of small prey individuals. However, it is unclear whether lionfish 

predation affects entire reef fish communities. Our goal was to assess the effect of lionfish on 

coral reef fish communities across a complex reef system. We quantified fish abundance, 

diversity, and community composition at sixteen reefs along ~250km of the Mesoamerican 

Barrier Reef in Belize over five years, including the onset of the invasion. Lionfish had no 

effect on reef fish community structure on our sites in Belize. The effects of lionfish may be 

density dependent, and current densities in Belize are likely due to a combination of natural 

factors and lionfish removals. Because current densities have no effect on reef fish 

communities, additional lionfish removal efforts may not be necessary to prevent impacts.  
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CHAPTER 1: THE EFFECT OF INVASIVE LIONFISH ON REEF FISH 

COMMUNITY STRUCTURE ALONG THE MESOAMERICAN BARRIER REEF 

Introduction 

Invasive species are widely recognized as a major threat to biodiversity and an 

important conservation priority (Bax et al. 2003, Pimentel et al. 2005, Molnar et al. 2008, 

Vilà et al. 2011). While the qualities conferring invasiveness of a species or “invasibility” of 

an ecosystem have been thoroughly explored, mostly in terrestrial ecosystems (Rejmánek and 

Richardson 1996, Levine and D’antonio 1999, Lonsdale 1999, Richardson and Pyšek 2006, 

Van Kleunen et al. 2010), studies quantifying the factors influencing the impact of an 

invasive species on the recipient community are less represented (Parker et al. 1999). 

Furthermore, the invasiveness of a species does not predict the impact it will have on invaded 

ecosystems (Ricciardi and Cohen 2007). Studies of invasion success can contribute to 

policies aimed at preventing invasions, but impact-focused studies are essential to developing 

conservation strategies once an invasive species has already become established. 

The impact of an invasion can also vary between invaded habitats, specifically across 

gradients of habitat connectivity. When exotic predators become invasive within isolated 

systems, prey populations are often decimated. For example, feral cats introduced to islands 

have caused an estimated 14% of the global extinctions of birds, mammals, and reptiles 

(Medina et al. 2011). However, invasive predators may have less of an impact on prey 

communities within more connected, open systems due to re-colonization through meta-

population dynamics or “the rescue effect”(Gotelli 1991).  
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Indo-Pacific lionfish (Pterois volitans and Pterois miles, hereafter called “lionfish”) 

are one of the first exotic predators to invade an open marine system, and the first to become 

established across the Caribbean region (Schofield 2009). Several characteristics such as 

cryptic coloration (Kindinger 2014), undetectable chemical cues (Lönnstedt and McCormick 

2013), and novel predation tactics (Albins and Lyons 2012), may increase their effectiveness 

as predators in their invaded range. Due to their generalist diet, consuming over 100 

Caribbean species (Morris and Akins 2009, Green et al. 2012, Green and Côté 2014), and 

high consumption rates (Cote and Maljković 2010), lionfish have the capacity to affect  

numerous native species and drive changes in native fish communities. In fact, lionfish 

significantly decreased the abundance, species richness, and diversity of coral reef fish 

recruits (<5 cm TL) during eight weeks on experimental reefs off of Lee Stocking Island, 

Bahamas (Albins 2013). Additionally, increasing lionfish abundance has been associated 

with a significant decrease in the biomass of native prey individuals (<15 cm TL) over two 

years along a continuous reef in New Providence, Bahamas (Green et al. 2012). However, 

these and other previous studies have only demonstrated the negative effects (i.e., decline in 

abundance and diversity) of invasive lionfish on small, native prey individuals on relatively 

small, isolated systems and controlled experimental reefs (Albins and Hixon 2008, Green et 

al. 2012, Albins 2013). It has yet to be determined whether the predation pressure of lionfish 

on small prey individuals drives changes in the entire (i.e., all size classes) reef fish 

community. 

The goal of our study was to quantify the effect of the lionfish invasion on reef fish 

communities across the world’s second largest barrier reef system: the Mesoamerican Barrier 

Reef (MBR). We tested whether reported effects of lionfish on small native fishes at small 
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spatial scales (Albins and Hixon 2008, Green et al. 2012, Albins 2013) can be detected on the 

entire reef fish community on contiguous reef habitats, within the context of existing 

variability. Specifically, we investigated the effects of lionfish abundance on reef fish 

abundance, diversity, and community composition. Our 16 fore-reef sites were along the 

Mesoamerican Barrier Reef in Belize, spanning ~250 km, across gradients of natural 

environmental conditions as well as anthropogenic stressors. Our longitudinal study began in 

2009, included the onset of the lionfish invasion in Belize (Schofield 2009), and continued 

until 2013. The design is a quasi-BACI design (Before After Control Impact) as we tracked 

changes in native fishes pre- and post-invasion and among sites varying in lionfish density 

over time.  We hypothesized that reef fish abundance, species richness, and diversity would 

be negatively related with lionfish abundance due to the predation of invasive lionfish on 

small prey individuals (Albins and Hixon 2008, Green et al. 2012, Albins 2013). We also 

hypothesized that coral reef fish communities would experience a shift in composition due to 

the invasion as lionfish can differentially reduce the biomass of prey species (Green et al. 

2012) by selectively feeding on species with certain morphological and behavioral traits 

(Green and Côté 2014). 

Lionfish can potentially influence reef fish communities both directly through 

predation and indirectly through competition. Lionfish may also influence native fish 

communities by other indirect mechanisms such as acting as a disturbance that increases the 

availability of resources or niches for the remaining reef fish species (Ward and Stanford 

1983). Therefore, to assess the effect of lionfish on native communities, we tested our 

hypotheses on two reef fish community groups. We first tested our hypotheses in terms of the 

reef fish community as a whole to quantify the overall (i.e. both direct and indirect) effect of 
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lionfish on reef fish. We then focused on the known prey fish community, or fish species 

previously documented as lionfish prey, to determine the direct effect of lionfish on reef fish 

communities.  

Methods 

2.1 Study Sites and Reef Fish Surveys 

We monitored 16 fore-reef sites at 12 to 15 m depth along the MBR in Belize (Fig. 1, 

Table S1). Three sites were in No-Take-Zones (NTZ’s) where no fishing is permitted and 

five sites were in Marine Protected Areas (MPA’s) where limited fishing is permitted. Sites 

in either NTZ’s or MPA’s are hereafter referred to collectively as “protected” sites. Eight 

sites were not under fishing or use restrictions and are hereafter referred to as “unprotected” 

sites. To minimize habitat variability of survey sites, we only surveyed spur-and-groove 

habitats formerly dominated by Orbicella (formerly Monstastrea). At each site, underwater 

visual surveys of reef fish were performed using six to eight belt transects (modified from 

AGRAA v5.0 (Lang et al. 2010)) placed parallel to the spur-and-groove formations. We 

counted and identified reef fish to species, and estimated sizes (total length (TL)) in 5-10 cm 

intervals. Fish  <5 cm TL, were counted in 15 x 1 m belt transects while fish between 5 and 

40 cm TL were counted in 30 x 2 m belt transects. Fish >40 cm TL as well as lionfish were 

counted in 50 x 10 m belt transects, including a thorough search for cryptic lionfish. At each 

site, the longer and wider transect contained the smaller transects. We surveyed our sites each 

year from 2009-2013 in mid-May to early June during full daylight. Surveys were performed 

by the same team in 2010, 2012, and 2013 so only this data was included in our models 

(detailed below) to minimize potential variability in data collection due to surveyor bias. 
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2.2 Reef Fish Community Structure 

Reef fish abundance (individuals/m2) was calculated for each reef fish species and 

total reef fish abundance was defined as the sum of the abundances of each species 

(excluding lionfish) per transect. Species richness and species diversity of reef fish were 

calculated to quantify changes in alpha diversity. Species richness (S) was calculated as the 

total number of species present (excluding lionfish) per transect. Species diversity was 

calculated in terms of Shannon-Wiener diversity (H’), a metric that accounts for both species 

richness and evenness, was calculated as: 

− ∑ 𝑝𝑖 ∙ ln(𝑝𝑖)

𝑆

𝑖=1

 

where S = species richness, and pi = the proportion of species i in the transect.  

Community composition was quantified in terms of Bray-Curtis dissimilarity as: 

2𝐶𝑖𝑗

𝑆𝑖 + 𝑆𝑗
 

where Cij = species in common between sites i and j, and S(i or j) = species in site i or j. 

All indices of community structure and composition were quantified using the vegan (v2.0-

10) package in R (R Development Core Team 2013). 

2.3 Prey Community Structure 

Prey species were identified as species documented to be consumed or directly 

influenced by lionfish throughout the Caribbean (Table S2) (Albins and Hixon 2008, Morris 

and Akins 2009, Layman and Allgeier 2011, Green et al. 2012, Valdez-Moreno et al. 2012, 
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Albins 2013, Cote et al. 2013, Green and Côté 2014). Prey fish abundance, species richness, 

species diversity, and community composition were quantified using the same methods 

previously described for the total fish community. 

2.4 Abiotic Covariates 

 To account for variability among sites, we included three site-specific abiotic 

covariates in our analysis: site protection status, reef complexity, and humans per area of 

reef.  All three are known to affect reef fish diversity and abundance (Friedlander et al. 2003, 

Williams et al. 2008) and could influence the effect of lionfish on fish communities. Due to 

regulations on fishing, protected sites may have higher fish abundance, species richness, or 

diversity than unprotected sites. Yet lionfish could have a weaker effect on reef fish 

communities on protected sites compared to unprotected due to lower abundances (Green et 

al. in press, Barbour et al. 2011, Frazer et al. 2012, Hackerott et al. 2013) or changes in 

lionfish behavior (Côté et al. 2014) due to lionfish culling. We split protected sites into either 

NTZ or MPA status as different protection levels may differ in influence on reef fish 

communities and the effect of lionfish. We included reef complexity as a predictor because 

highly complex reefs may support higher reef fish abundances or diversity compared with 

less complex reefs (Friedlander et al. 2003). Although reef complexity may not influence 

lionfish abundance (Valdivia et al. 2014, Anton et al. 2014), it could alter predation success 

of lionfish on resident reef fish by decreasing predation risk due to higher refuge availability 

for prey (Beukers and Jones 1998). To estimate reef structural complexity, we used an index 

from 0 to 5, where “0” was a reef with no vertical relief and “5” was an exceptionally 

complex reef (Polunin and Roberts 1993, Valdivia et al. 2014). Reef complexity was 

estimated along each transect and then averaged to obtain a single value for each site. Human 
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population per reef area (hereafter referred to as “humans/reef”) was used as a proxy for 

fishing pressure (Newton et al. 2007, Mora 2008). We hypothesized that fishing pressure 

could negatively affect reef fish abundance, species richness, and diversity, but would likely 

not influence lionfish abundance (Valdivia et al. 2014). Humans/reef was calculated as the 

human population within a 50 km radius of each site, divided by reef area within a 10 km 

radius of each site (details in Valdivia et al. 2014). A Spearman correlation matrix among the 

numerical explanatory variables indicated no correlation that could compromise 

simultaneous modeling, therefore we included all three abiotic covariates in the analytical 

models. 

2.5 Analysis of the Effects of the Lionfish Invasion 

We used generalized linear mixed effect models (glmer) to evaluate the effect of 

lionfish abundance and time since invasion on reef fish (total fish and prey) abundance, 

species richness, and species diversity, accounting for site-specific abiotic covariates. All reef 

fish community responses were modeled separately using the lme4 (v1.1-5) package (R 

Development Core Team 2013). Total fish and prey fish abundance were modeled with a 

gamma log-link distribution, species richness with a gamma identity-link distribution, and 

species diversity with a Gaussian log-link distribution. Outliers, points outside of the 

“whiskers” in a boxplot of the values (split by year), were removed from lionfish abundance 

data (~4%, 17 total transects out of the 406 collected from 2009-2013) in all models to aid 

with model fit (Fig. S1). Additionally, the outliers of total fish (~7.5%, 16 transects out of the 

214 collected in 2010, 2012, and 2013 and included in the models) and prey fish (~7%, 15 

out of 214) abundance as well as diversity (~1%, 2 out of 214, for total fish and ~2%, 4 out 

of 214, for prey fish) were also removed from each respective model to aid with model fit 
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(Fig. S1). Site was included in each model as a random effect to account for within site 

variability. The number of years following the lionfish invasion, lionfish abundance, and the 

three abiotic covariates were coded as fixed effects in each model. We standardized (centered 

and divided by standard deviation) all numerical predictors in each model. We also included 

interactions between lionfish abundance, year, and each abiotic covariate in each global 

model. Global models were structured as: 

𝑦 =  𝛽0 + 𝛽1 ∙ 𝑌𝑒𝑎𝑟𝑖 + 𝛽2 ∙ 𝐿𝑖𝑜𝑛𝑓𝑖𝑠ℎ 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖 + 𝛽3 ∙ 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑡𝑢𝑠𝑖 

+𝛽4 ∙ 𝑅𝑒𝑒𝑓 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖 +  𝛽5 ∙
𝐻𝑢𝑚𝑎𝑛𝑠

𝑅𝑒𝑒𝑓
𝑖

+ 𝛽6 ∙ 𝐿𝑖𝑜𝑛𝑓𝑖𝑠ℎ 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖: 𝑌𝑒𝑎𝑟𝑖 

+𝛽7 ∙ 𝐿𝑖𝑜𝑛𝑓𝑖𝑠ℎ 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖: 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑡𝑢𝑠𝑖 + 𝛽8

∙ 𝐿𝑖𝑜𝑛𝑓𝑖𝑠ℎ 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖: 𝑅𝑒𝑒𝑓 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖 

+𝛽9 ∙ 𝐿𝑖𝑜𝑛𝑓𝑖𝑠ℎ 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖:
𝐻𝑢𝑚𝑎𝑛𝑠

𝑅𝑒𝑒𝑓
𝑖

+ 𝜀𝑖 ≈ 𝑁(0, 𝜎𝑖
2) 

where 𝑦 = log (𝑢𝑖)  for abundance and species diversity and 𝑦 = 𝑢𝑖 for species richness of all 

fish and prey fish. 

Each global model was dredged using the MuMIn (v1.9.13) package in R (R 

Development Core Team 2013) to extract all potential combinations of explanatory variables 

that produce top models with delta AIC < 2 (Burnham and Anderson 2002). Based on these 

selected models, coefficient estimates were averaged for each explanatory variable. The 

residuals of each final model were plotted against the fitted values and each of the predictors 

to check for homogeneity of variance of the errors. Variance Inflation Factor (VIF) were 

calculated for each predictor and threshold of VIF < 2 (Graham 2003) was used to check for 
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colinearity among the covariates included in final each model. Quantile-quantile plots (car 

package v2.0-19) were used to check normality of the residuals of each final model. Spline-

correlograms (ncf package v1.1-5) using the location coordinates of each site with 1,000 

resamples revealed no evidence of spatial autocorrelation of the residuals of each final model 

(R Development Core Team 2013).   

Changes in reef fish (both total and prey fish) community composition in response to 

year (pre-invasion: 2010 and post-invasion: 2013) and lionfish abundance were first assessed 

using permutational multivariate analysis of variance (PERMANOVA) of the formula 

[𝑇𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑏𝑦 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥]~𝑌𝑒𝑎𝑟𝑖 ∗ 𝐿𝑖𝑜𝑛𝑓𝑖𝑠ℎ 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖 

with 10,000 permutations, stratified by site i, using Bray-Curtis dissimilarity (vegan package 

v2.0-10).  Pre-invasion (2010) and post-invasion (2013) community compositions across all 

sites were quantified using an Analysis of Similarities (ANOSIM) with 10,000 permutations, 

grouped by year, using Bray-Curtis dissimilarity (vegan package v2.0-10). Reef fish 

community composition across all sites, pre- and post-invasion, were then assessed visually 

in two-dimensional space using nonmetric multidimensional scaling (NMDS) ordination 

analysis of Bray-Curtis dissimilarity using the vegan (v2.0-10) package in R (R Development 

Core Team 2013). We used NMDS because this ordination technique does not assume 

linearity of species responses or that species responses are due to environmental gradients 

(Minchin 1987). 

Results 

  Among the three survey years included in the analysis, 128 species of reef fish were 

identified, 36 (28%) of which were documented as lionfish prey species (Table S2). No 
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lionfish were recorded on our sites in 2009 but by 2010, lionfish were present on two sites 

(Calabash and South Middle Caye) at relatively low abundances (6.7± 6.7 individuals/ha 

(mean ± SE) on both sites), marking the onset of invasion. By 2012 lionfish were observed 

on 14 of 16 sites and on all sites by 2013. Across all sites, the average lionfish abundance 

(mean ± SE) was 0.9 ± 0.7 individuals/ha in 2010, peaked to 21.27 ± 5.50 individuals/ha in 

2011 and decreased slightly, but not significantly, in 2012 to 16.3 ± 5 individuals/ha and 11.1 

± 4.2 individuals/ha in 2013 (Fig. 2). The highest lionfish abundance found during our study 

was 70 ± 29.2 individuals/ha at Pampion in 2012. Due to the presence of lionfish on all 16 

sites by the end of the study, our design was not a BACI design in a strict sense. However, 

lionfish density varied among sites over time and we used this variability to test the effects of 

lionfish over a gradient of potential impact levels (assuming the effects of lionfish are 

density-dependent).   

Lionfish abundance had no significant effect on the abundance, species richness, or 

species diversity of total fish or prey fish communities (Fig. 3, Table S3). Reef complexity 

was positively related to total fish abundance and species richness (Fig. 3, Table S3).  For the 

analysis of prey fish species richness, the null model was retained during the model 

averaging procedure which indicates that prey fish species richness is more strongly 

influenced by factors other than those included in our model. Total fish species diversity 

decreased (marginally significantly) with years following the lionfish invasion but this trend 

was not related to lionfish abundance. Total fish species diversity was also significantly 

lower on sites within MPA’s or NTZ’s compared to unprotected sites (Fig. 3, Table S3).  The 

quantile-quantile plot of the residuals of the model of total fish species diversity indicated 
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that the residuals were slightly non-normal due to a few values at the extremes (Fig. S3), yet 

this was the best fit model for our available data. 

The PERMANOVA analysis indicated total fish and prey fish community 

composition changed over time on some sites (p-value= 10.0e-5 and 10.0e-5, respectively) but 

community composition was not related to lionfish abundance (p-value= 0.87 and 0.83, 

respectively). Additionally, there were no clear patterns indicating changes in total fish or 

prey community composition from before (2010) to after (2013) the lionfish invasion across 

all sites (Fig. 4). This was confirmed by an analysis of similarity (ANOSIM) comparing 

communities across all sites between pre- and post-invasion for both total and prey fish (p-

value= 0.61 and 0.53, respectively).  

Discussion 

We found no evidence supporting the hypothesis that predation of lionfish on small 

prey individuals (Albins and Hixon 2008, Green et al. 2012, Albins 2013) affects adult reef 

fish communities. Across sixteen fore-reef sites on the MBR in Belize, there was no 

relationship between the abundance of lionfish and the abundance, species richness, 

diversity, or community composition of all native fishes or native prey species. The only 

factors significantly related to fish community structure were reef complexity, site protection 

status, and time since the lionfish invasion. Habitat complexity not only influences reef fish 

communities through habitat availability (Friedlander et al. 2003), but can also reduce 

mortality due to predation (Beukers and Jones 1998). On the MBR in Belize, habitat 

complexity was more important in structuring reef fish communities than predation by 

lionfish, but did not modulate the effect of lionfish (i.e. the interaction between lionfish 

abundance and habitat complexity had no significant effect on reef fish community 
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structure). Total fish diversity was lower on protected sites compared to unprotected, which 

is the opposite of the expected effect of fishing regulations on reef fish communities 

(Friedlander et al. 2003). This difference in diversity is likely indicative of differences in 

species evenness, however, as species richness was not influenced by protection status. For 

example, differences in fishing regulations may influence the relative abundances of reef fish 

species, resulting in communities where species evenness, and therefore diversity, is lower 

on protected sites compared to unprotected sites. Although there was a significant effect of 

time since invasion on total fish diversity, this pattern was not related to lionfish abundance. 

Additionally, reef fish community composition changed significantly on some sites, but there 

was no overall shift in composition from pre- to post-invasion across the MBR. Lionfish 

abundance had no significant effect on reef fish community structure or composition, so 

these changes over time are not due to the lionfish invasion. Instead, this is likely indicative 

of inter-annual fluctuations in the reef fish community responses, potentially due to 

stochastic population variation, recruitment success, or variability in unmeasured 

environmental drivers.  

The specific effects of an invasive predator on native communities (i.e., declines in 

abundance/diversity or changes in community composition) can be estimated with controlled 

lab or field experiments. However, to properly inform management and conservation 

strategies, it is necessary to determine the importance of the invasive predator relative to 

existing forces structuring native communities including other anthropogenic impacts. Prey 

populations are naturally regulated by bottom-up forces such as habitat availability, top-down 

forces such as predation by native species, inter- and intra-specific competition, as well as 

stochastic processes such as variability in recruitment or environmental suitability (Hunter 
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and Price 1992, Power 1992). Additionally, anthropogenic stressors including exploitation, 

habitat degradation and fragmentation, pollution, and climate change are threatening natural 

communities (Halpern et al. 2008). These natural and anthropogenic forces could be more 

important for community structure than the effect of the invasive predator, suggesting 

conservation efforts should be focused on threats other than the invader. However, it is 

difficult to design controlled experiments that include the suite of factors influencing prey 

communities. Additionally, the relative importance of recruitment vs. post-recruitment 

processes cannot necessarily be extrapolated from isolated habitat patches to contiguous 

habitats in the marine environment (Ault and Johnson 1998). Our study design allowed us to 

use the lionfish invasion on the MBR as an “accidental” large-scale experiment to quantify 

the effects of invasive lionfish over time within a natural reef system. Our goal was to 

determine if the effect of lionfish was apparent in reef fish communities within the context of 

the existing environmental and annual variability across our fore-reef sites. We found no 

evidence to support this. Instead, reef fish communities were structured by bottom-up effects 

of habitat complexity and stochastic processes (e.g., annual variability) rather than the top-

down pressure of predation by lionfish on reef fish recruits. 

Scale-dependent mechanisms may also be relatively more important in structuring 

reef fish communities compared to the predation of lionfish. The existing documentation of 

negative effects of lionfish on prey individuals comes from experimental reefs near Lee 

Stocking Island, Bahamas, covering an area of ~6 km2 and a total surveyed area of ~80 m2 

(20 ~4 m2 reefs) (Albins and Hixon 2008, Albins 2013) as well as one observational study on 

a single continuous reef with sites separated by 1 km in New Providence, Bahamas (Green et 

al. 2012). In contrast, our study tested the effect of the lionfish invasion across a latitudinal 
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scale, covering a ~250 km stretch of reef and a total surveyed area of ~48 km2 (~6 transects 

of 50 x 10 m area on 16 sites) including 16 different sites along the MBR in Belize Fig. 1, 

Table S1). In our large-scale and complex study system, reefs may be connected (Tang et al. 

2006, Soto et al. 2009) and influenced by meta-population dynamics (Kritzer and Sale 2004). 

The underlying impact of lionfish on individual reefs could be counteracted by recruitment or 

immigration from surrounding reefs within the system (i.e., the “rescue effect” (Gotelli 

1991)) depending on reef connectivity (Ault and Johnson 1998). Potential evidence of this is 

provided in the lionfish removal experiment by Green et al. (2014) where the effect of 

lionfish on small prey biomass differed between low and high lionfish density treatments, yet 

this pattern was not apparent in the biomass of larger individuals between treatments. 

Instead, the biomass of larger individuals increased across all lionfish densities treatments, 

which authors attributed to inter-reef movement of individuals offsetting the underlying 

effect of lionfish (Green et al. 2014). Isolated study systems, such as those used in previous 

studies (Albins and Hixon 2008, Albins 2013), are essential for experimentally quantifying 

the effect of an in-situ treatment (e.g., the presence of lionfish). However conclusions from 

such experiments may not necessarily be applicable to more complex systems without further 

investigation. Our study design allowed us to determine that the effect of lionfish on reef fish 

communities was not apparent within a complex reef system. 

The effects of invasive species may be influenced by the composition or structure of 

the recipient communities, especially in terms of potential competition pressure (i.e., the 

“biotic resistance hypothesis”(Elton 1958)). One possible explanation for our results may be 

that competitor abundance declined as lionfish abundance increased during the time of our 

study, so that net top-down predation pressure on recruits remained fairly constant (although 
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lionfish have been shown to have a greater effect on fish recruits than native predators on 

experimental reefs (Albins 2013)). However, this is not the case on our sites as the 

abundance of piscivores that are ecologically similar to lionfish (species listed in Table S4) 

did not decrease across our sites from 2009 to 2013 (Fig. S4). Instead, average competitor 

abundance remained fairly constant, with a slightly positive trend over time (Fig. S4). 

Therefore, the lack of apparent effect of lionfish on reef fish communities is likely not due to 

changes in native piscivore abundance. However, the effect of lionfish may be limited by the 

relative abundance of native predators. Native predators do not control lionfish (Hackerott et 

al. 2013, Valdivia et al. 2014), but proportionally lower lionfish biomass in comparison to 

native predators may limit the relative influence of lionfish on reef fish communities. On 

impacted reefs, lionfish can comprise a sizable portion of the total fish predator biomass, 

becoming one of the most important predators. For example, lionfish were reported to 

increase from 23% to 40% of the total predator biomass on reefs in New Providence, 

Bahamas from 2008-2010, coinciding with a decrease in biomass of small prey individuals 

(Green et al. 2012). During experiments that demonstrated a significant effect on reef fish 

recruits, lionfish comprised ~50-100% of the total predator biomass (Albins and Hixon 2008, 

Albins 2013).  In contrast, lionfish biomass in our study peaked at ~27% of the total biomass 

of ecologically similar predators (Table S4) in 2011 and remained relatively low, ~10-11%, 

during 2012 and 2013 (Fig. S5). While previous studies showed that lionfish can control reef 

fish recruits when acting as one of the most important, or the only, predators, it is likely that 

the effect of lionfish on reef fish communities is context-dependent.    

The effect of lionfish on reef fish communities may also be density-dependent. On 

patch reefs, the effect of lionfish on the biomass of small prey individuals can be limited if 
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lionfish densities are reduced below a reef-specific threshold (Green et al. 2014). The lionfish 

densities across our sites post-invasion (2012 and 2013) were significantly lower (one-tailed 

t-test; t= 8.3; p-value=2.4e-6) than the lionfish densities (mean ± SE; ~138.9 ± 14.7 

individuals/ha) in the 25th percentile of the thresholds predicted for patch reefs in Eleuthera, 

Bahamas (Green et al. 2014). While the values of threshold densities vary across different 

communities, site-specific “thresholds” for our larger fore-reef sites are more likely to be 

higher rather than lower than those estimated for smaller patch reefs, as reef fish 

communities may be more strongly structured by recruitment on isolated patch reefs than on 

contiguous reef systems (Ault and Johnson 1998). Therefore, it is likely that the lionfish 

densities on our sites were lower than the site-specific “threshold” levels, which could 

explain why the predicted effects of lionfish were not apparent in our study.  

The density of lionfish also differed between our study and previous studies testing 

the effects of lionfish on small prey individuals. On experimental reefs in Lee Stocking 

Island, Bahamas, lionfish treatments included one lionfish per ~1 m2, 3 m2, and 4 m2 reefs 

which scales to unrealistic densities of ~2500-10,000 individuals/ha (Albins and Hixon 2008, 

Albins 2013) which is 1-2 orders of magnitude higher than the maximum recorded density 

(Green and Côté 2009) and ~100-900 times higher than our average post-invasion densities. 

Again, such controlled experiments are essential to determine the potential effect of a 

treatment (e.g., the presence of lionfish). However, it is important to consider the 

applicability of the experimental treatment to existing systems and to measure the realized 

effects at realistic treatment levels. In New Providence, Bahamas, the existing levels of 

lionfish abundance were reported to coincide with a decrease in prey biomass, although these 

patterns were not analyzed together at the transect or site level (Green et al. 2012). While the 
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values of lionfish densities were not reported in that study, values reported on sites in New 

Providence during the time of the study (101.6 ± 28.6 individuals/ha in 2008 and 87.9 ± 24.2 

individuals/ha in 2010 (Darling et al. 2011, Valdivia et al. 2014)) were significantly higher 

(one-tailed t-test; t=4.2; p-value=2.0e-4) than lionfish densities across our sites post-invasion 

(2012 and 2013). Additionally, maximum lionfish densities reached 393.3 ± 83.4 

individuals/ha in 2008 on three sites in New Providence, Bahamas (Green and Côté 2009) 

while the highest lionfish density on our study sites was 70 ± 29.2 individuals/ha at Pompion 

in 2012. Even 4 years after the first lionfish was reported in each region (New Providence: 

2005 and Belize: 2009 (Schofield 2009)), lionfish densities were significantly higher (one-

tailed t-test; t=3.1; p-value=4.0e-3) in New Providence, Bahamas than on our sites in Belize, 

so time since invasion does not explain the difference in densities. It is possible that lionfish 

propagule pressure is lower in Belize compared to the Bahamas due to higher spatial 

separation and/or lower connectivity with the point of origin of the invasion (Southern 

Florida (Schofield 2009)), similar to patterns documented in terrestrial invasions (Hastings et 

al. 2005, Alston and Richardson 2006).  

Lionfish densities in Belize are likely controlled by a combination of natural (e.g., 

propagule pressure, environmental suitability, etc.) and anthropogenic forces (e.g., lionfish 

removals by reef managers and recreational divers), although the relative influence of these 

factors on lionfish in Belize is unknown. While an effect of lionfish may become apparent in 

the future (due to increases in lionfish density or decreases in prey productivity), current 

densities of lionfish have had no apparent effect on reef fish communities on our sites. It 

seems that the current level of control on lionfish densities has been sufficient to prevent 

impacts, therefore additional lionfish removal efforts may not be necessary on our sites. 
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Additionally, we suggest quantifying the importance of current removal efforts, relative to 

natural forces, on both lionfish densities and impacts to determine the necessary level of 

lionfish removals. This can increase reef management efficiency, which is essential in 

countries such as Belize where reef managers are often resource-limited. Lionfish densities 

and apparent impacts should also be monitored on our sites through time, as well as across 

other reef sites and different habitat types in Belize, to identify sites where targeted removal 

efforts may be necessary. It is unlikely that lionfish can be completely extirpated from 

invaded reefs, but our study suggests this may not be necessary to prevent impacts on reef 

fish communities. Therefore, future efforts should be focused on monitoring for apparent 

impacts of lionfish so that management resources are not wasted on extraneous lionfish 

removals in areas where they may not be necessary.  

Our study provides the first case study quantifying the effects of lionfish on reef fish 

communities that may be applicable across the Caribbean. Lionfish densities on our sites in 

Belize are more comparable to published densities on reefs in Mexico, Cuba, The Bahamas, 

Colombia, and Venezuela than densities reported in New Providence, Bahamas (Fig. 5, Text 

S1), previously assumed to be representative of the entire Caribbean. The effects of lionfish 

are likely density dependent (Green et al. 2014) so the effect of lionfish in Belize may be 

representative of the effect in areas with similar densities. Additionally, lionfish densities in 

these areas across the Caribbean were below the estimated “effect threshold” and comparable 

to densities reported in the native range (Fig. 5, Text S1) which may further support the 

possibility that current lionfish densities in these areas might not be detectably changing reef 

fish communities. However, effects of lionfish are also dependent upon prey productivity so 
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lionfish densities and apparent impacts should be continually monitored on these coral reef 

sites as well as on additional sites and habitats across the Caribbean. 

Conclusions 

Caribbean coral reefs face a growing list of current and future threats including 

overfishing of predatory fish (Stallings 2009), exploitation of herbivores (Mumby 2006), 

other local anthropogenic stressors (Mora 2008), as well as the stresses associated with 

global climate change (Hoegh-Guldberg et al. 2007). For reef managers tasked with 

conserving these ecologically and economically important ecosystems, conservation 

priorities must be applicable within the context of existing variability and stresses across 

reefs. Our study is the first to quantify the effects of lionfish on reef fish communities across 

a large-scale, complex reef system, within the context of existing variability. While lionfish 

were predicted to decimate native reef fish communities (Green et al. 2012, Albins and 

Hixon 2013) and have the potential to influence small prey individuals in experimental 

settings (Albins and Hixon 2008, Albins 2013), lionfish have had no apparent effect on reef 

fish communities in Belize. The level at which lionfish are currently controlled in Belize, due 

to lionfish culling or other factors, have been sufficient to prevent detectable changes in reef 

fish communities. Therefore reef managers in Belize may not need to increase their efforts to 

control lionfish. This management recommendation may be applicable to other regions in the 

Caribbean with comparable lionfish densities. Lionfish removal efforts are common 

throughout the Caribbean and can successfully reduce the abundance (Barbour et al. 2011, 

Frazer et al. 2012) and effects (Green et al. 2014) of lionfish. However, our study suggests 

that the management effort necessary to prevent the impacts of lionfish may not be as 

generalizable as previously assumed, but instead will likely vary across the Caribbean and 
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depend upon local conditions and lionfish densities. The densities and effects of lionfish 

should be monitored to identify sites where targeted removals may be necessary to conserve 

native reef fish communities as well as to identify sites that should be more strenuously 

managed for threats other than lionfish. While the lionfish invasion is a Caribbean-wide 

problem, the development of management plans and priorities should be region-specific. 
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FIGURES 

 

Figure 1. Location of Survey Sites. Location of surveys sites. For sites abbreviations, 

coordinates, and other site info, refer to Table S1. 
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Figure 2. Average Lionfish Abundance from 2009 to 2013. Lionfish abundance 

(individuals/ha), averaged over all survey sites for each survey year. N is the number of sites 

surveyed in each year. 
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Figure 3. Coefficient Estimates (mean ± 95% confidence interval) for Each Model. Total 

fish and prey fish abundance, species richness, species diversity were each modeled with the 

predictors of interest (lionfish abundance and years since the lionfish invasion) as well as the 

abiotic covariates (reef complexity, protection status, humans/reef) and possible interactions, 

separated by the dotted blue line. The coefficient estimates for the models of total fish are 

indicated by squares while those of prey fish are indicated by triangles. Significantly positive 

estimates are shown in blue and significantly negative in red (details in Table S3). 
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Figure 4. Total Fish and Prey Fish Community Composition in 2010 and 2013. 

Community composition of total fish and prey fish communities within two-dimensional 

space using nonmetric multidimensional scaling (NMDS) of Bray-Curtis dissimilarity at the 

site level. Communities in 2010 (before invasion) are shown in gray dots and circled in grey 

while communities in 2013 (after invasion) are shown in black triangles and circled in black. 
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Figure 5. Lionfish Abundance in Native and Invaded Ranges and Estimated Impact 

Threshold. Lionfish abundance (individuals/ha) in the native range (left panel) and the 

invaded range (center two panels), compared with the 25th percentile abundance threshold 

predicted to limit effects of lionfish on reef fish (Green et al. 2014) (right panel); details in 

Text S1. Boxplots were used to represent lionfish abundance if site-level data was available. 

If not, averages and confidence intervals were plotted. The number of sites surveyed in each 

area are in parentheses. Average lionfish abundance for each area is represented by a solid 

black dot. Letters indicate significant differences (p<0.05) in lionfish abundance across all 

studies where site-level data was available. The number of years since the region-specific 

onset of invasion (Schofield 2009) at the time of each study are represented by the number of 

gray boxes along the bottom panel. 
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APPENDIX 1: SUPPLEMENTAL TABLES 

Table S1. Site Information and Coordinates.  

Site Name Site 

Code 

Latitude 

(N) 

Longitude 

(W) 

Prot. 

Level 

Prot. 

Status 

Reef 

Complexity 

Humans/ 

Reef 

Alligator AL 17.1966 -88.0512 None No 2 6.39 

Bacalar 

Chico BC 18.16282 -87.8222 

NTZ Yes 

2.92 4.53 

Calabash CA 17.26147 -87.8197 None No 2.42 14.55 

Gallows GA 17.49592 -88.0426 None No 3.5 5.9 

Hol Chan HC 17.86343 -87.9724 NTZ Yes 2 14.03 

Half Moon HM 17.2056 -87.5468 NTZ Yes 5 3.28 

Middle Cay MC 16.73703 -87.8054 MPA Yes 1.67 0.73 

Mexico 

Rocks MR 17.98782 -87.9038 

None No 

2.58 11.63 

Nicholas NI 16.1123 -88.2559 MPA Yes 2.33 11.81 

Pampion PO 16.3731 -88.0891 None No 2.92 2.61 

Ranguana RA 16.28501 -88.1503 None No 2.83 2.79 

South 

Middle Cay SM 16.72875 -87.8287 

MPA Yes 

2 1 

Southwest ST 16.11247 -88.2711 MPA Yes 2.33 7.8 

South Water SW 16.81346 -88.0776 MPA Yes 2.08 2.45 

Tackle Box TB 17.91056 -87.9508 None No 2.75 12.86 

Tobacco TO 16.91911 -88.0476 None No 2.08 4.01 
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Table S2. Prey Species and Sources. Fish species that are documented prey for lionfish in 

the Caribbean. 

Family Species Name Sources 

Acanthuridae Acanthurus bahianus 3 

Acanthuridae Acanthurus chirurgus 6,8 

Acanthuridae Acanthurus coeruleus 5 

Aulostomidae Aulostomus maculatus 2,3,4,7 

Cirrhitidae Amblycirrhitus pinos 3 

Gobiidae Coryphopterus dicrus 3,5,7 

Grammatidae Gramma loreto 1,2,3,4,7 

Haemulidae Haemulon aurolineatum 7 

Haemulidae Haemulon flavolineatum 1,7 

Holocentridae Holocentrus rufus 2,7 

Labridae Bodianus rufus 3,4,6,7,8 

Labridae Clepticus parrae 2,3,4,7 

Labridae Halichoeres bivittatus 2,3,4,7,8 

Labridae Halichoeres garnoti 1,2,3,4,5,7,8 

Labridae Halichoeres maculipinna 3,4,5,6 

Labridae Halichoeres pictus 3,5,6 

Labridae Thalassoma bifasciatum 1,2,3,4,6,7,8 

Mullidae Pseudupeneus maculatus 3,4,7 

Pomacentridae Abudefduf saxatilis 1,8 

Pomacentridae Chromis cyanea 2,3,4,7 
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Pomacentridae Chromis insolata 3 

Pomacentridae Chromis multilineata 2,3,4,7 

Pomacanthidae Holacanthus ciliaris 6 

Pomacentridae Stegastes leucostictus 3,6,8 

Pomacentridae Stegastes partitus 1,2,3,4,5,6,7 

Pomacentridae Stegastes variabilis 2,3,4,5,7 

Scaridae Scarus iserti 1,3,7 

Scaridae Scarus taeniopterus 1 

Scaridae Sparisoma atomarium 5,6 

Scaridae Sparisoma aurofrenatum 1,2,4,5,6,7 

Scaridae Sparisoma viride 1,3,5,6 

Scorpaenidae Scorpaena plumieri 6 

Serranidae Cephalopholis cruentata 1,2,4,7 

Serranidae Epinephelus striatus 3,4 

Serranidae  Serranus tigrinus 2,3,4,5,6,7 

Tetraodontidae Canthigaster rostrata 3,5,6,7 

 

Sources: 1. Valdez-Moreno et al (2012), 2. Cote et al (2013), 3. Morris and Akins (2009), 4. 

Green et al (2012), 5. Albins and Hixon (2008), 6. Albins (2013), 7. Green and Cote (2014), 

8. Layman and Allgeier (2011) 

 

 

 

 



29 
 

Table S3. Coefficient Estimates and p-values for Each Model. Coefficient estimates and 

p-values for each model of (A) total fish and (B) prey fish abundance, species richness, and 

species diversity. Significant coefficient estimates are shown in bold at alpha 0.05. “NA” 

indicates that the predictor did not remain in the final model following model averaging.  

Table S3A. All Fish Total Abundance  Species Richness Species Diversity 

 Estimate p-value Estimate p-value Estimate p-value 

Lionfish Abundance -0.0530 0.0632 -0.4051 0.0935 -0.0130 0.1581 

Year 0.0481 0.0931 0.1904 0.4460 -0.0177 0.0411 

MPA NA NA NA NA -0.1036 0.0015 

NTZ NA NA NA NA -0.0897 0.0177 

Reef Complexity 0.1009 0.0328 1.5639 0.0005 -0.0192 0.2522 

Humans/Reef NA NA NA NA -0.0227 0.1621 

Lionfish Abundance : 

Year 

0.0422 0.4367 NA NA NA NA 

Lionfish Abundance : 

Protected 

NA NA NA NA NA NA 

Lionfish Abundance : 

Reef Complexity 

NA NA 0.5012 0.0773 NA NA 

Lionfish Abundance : 

Humans/Reef 

NA NA NA NA NA NA 
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Table S3B. Prey Fish Total Abundance  Species Richness Species Diversity 

 Estimate p-value Estimate p-value Estimate p-value 

Lionfish Abundance -0.0656 0.0555 -0.2097 0.177 -0.0159 0.1183 

Year 0.0695 0.0514 0.1656 0.324 -0.0180 0.0649 

MPA NA NA NA NA NA NA 

NTZ NA NA NA NA NA NA 

Reef Complexity 0.0900 0.0953 0.2372 0.324 -0.0253 0.1041 

Humans/Reef NA NA -0.2016 0.392 -0.0294 0.0619 

Lionfish Abundance : 

Year 

0.0848 0.1507 0.3473 0.241 0.0170 0.3787   

Lionfish Abundance : 

Protected 

NA NA NA NA NA NA 

Lionfish Abundance : 

Reef Complexity 

NA NA NA NA NA NA 

Lionfish Abundance : 

Humans/Reef 

NA NA NA NA -0.0163 0.2696 
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Table S4. Competitor Species. Fish species present on our surveys that are ecologically 

similar to lionfish based on diet from Green et al. (2012) and FishBase. 

Family Species Name 

Aulostomidae Aulostomus maculatus 

Carangidae Alectis ciliaris 

Carangidae Carangoides ruber 

Carangidae Caranx bartholomaei 

Carangidae Caranx crysos 

Carangidae Elagatis bipinnulata 

Lutjanidae Lutjanus analis 

Lutjanidae Lutjanus apodus 

Lutjanidae Lutjanus cyanopterus 

Lutjanidae Lutjanus jocu 

Lutjanidae Lutjanus mahogoni 

Lutjanidae Lutjanus synagris 

Scorpaenidae Scorpaena plumieri 

Serranidae Cephalopholis cruentata 

Serranidae Cephalopholis fulva 

Serranidae Epinephelus adscensionis 

Serranidae Epinephelus guttatus 

Serranidae Epinephelus itajara 

Serranidae Epinephelus morio 

Serranidae Epinephelus striatus 
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Serranidae Mycteroperca bonaci 

Serranidae Mycteroperca interstitialis 

Serranidae Mycteroperca tigris 

Serranidae Mycteroperca venenosa 
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APPENDIX 2: SUPPLEMENTAL FIGURES 

 

Figure S1. Boxplots of Lionfish Abundance, Prey Fish Diversity, and Total and Prey 

Fish Abundance. Boxplots were used to determine the outlier transects that were removed 

from lionfish abundance (individuals/ha) in all models and from prey fish diversity and total 

and prey fish abundance (individuals/m2) in each respective model. 
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Figure S2. Lionfish Abundance from 2009 to 2013 on Each Site. Lionfish abundance 

(individuals/ha) over survey years on each survey site. 
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Figure S3. Quantile-Quantile Plot of the Residuals of the Model of Total Fish Species 

Diversity. Residuals of the models of total fish species diversity are slightly non-normal due 

to a few values at the extremes. 
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Figure S4. Abundance of Native Competitors 2009-2013. The abundance (individuals/ha) 

of native piscivores that are ecologically similar to lionfish (see Table S4) from 2009-2013, 

averages across site. N is the number of sites surveyed in each year. 
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Figure S5. Biomass of Lionfish and Native Competitors from 2009 to 2013. The biomass 

(g/m2) of lionfish is shown in light gray, and the total biomass of all ecologically similar 

native piscivores (see Table S4) is shown in dark gray, from 2009-2013, averaged across 

sites. The percentage of total predator biomass contributed by lionfish is shown above the 

average biomass of lionfish in each year. N is the number of sites surveyed in each year. 
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APPENDIX 3: SUPPLEMENTAL TEXT 

Text S1. Published Values of Lionfish Densities in Native and Invaded Range. 

Lionfish density data was collected from published studies with methods comparable 

to ours. Only studies surveying coral reef habitats with belt transects of defined lengths and 

widths were included. Additionally, only studies that presented averages ± standard 

deviation/error, or site-level data were included. Lionfish densities from a total of eight 

published studies, representing two regions of the Indo-Pacific (native range) and five 

regions of the Caribbean (invaded range), were compared to our values from Belize. Lionfish 

densities in Belize were not significantly different than those measured in Mexico (two-tailed 

t-test; t=-2.0; p-value=6.4e-2), Bay of Pigs, Cuba (two-tailed t-test; t=-0.1; p-value=0.9), 

Jardines de la Riena, Cuba (two-tailed t-test; t=-1.9; p-value=0.1), Abaco, Bahamas (two-

tailed t-test; t=-0.7; p-value=0.5) (Valdivia et al. 2014), and San Salvador, Bahamas (two-

tailed t-test; t=-0.2; p-value=0.9) (Anton et al. 2014), and were significantly higher than those 

in Colombia (one-tailed t-test; t=-3.0; p-value=2.3e-3) (Bayraktarov et al. 2014) (Fig. 5). 

Lionfish densities in Venezuela (Agudo and Salas 2014) were higher than those in Belize 

(one-tailed t-test; t=-2.2; p-value=1.8e-3), but significantly lower than those reported in New 

Providence, Bahamas (one-tailed t-test; t=3.5; p-value=1.9e-3) (Darling et al. 2011, Valdivia 

et al. 2014) (Fig. 5). Furthermore, lionfish densities on our sites in Belize were not 

significantly different (two-tailed t-test; t=0.8; p-value=0.5) in the native range, specifically 

the Red Sea where site-level data was available (McTee and Grubich 2014), and were 

comparable to densities in Guam and the Philippines (Cure et al. 2014), as well as Kenya 

(Darling et al. 2011) (Fig. 5). 
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