14,946 research outputs found
Mechanism of microstructural modification of the interfacial transition zone by using blended materials
Applying blended materials with finer particle size or high reactivity could be an effective and economic way for improving the microsturcture of interfacial transition zone (ITZ). In this study, the porosity characteristics of ITZ in concrete made with OPC and blended binders were determined quantitatively by using backscattered electron microscopy (BSE) image analysis and mercury intrusion porosimetry (MIP) measurements. This paper especially focused on the effects of slag and limestone filler on the thickness and pore structure of the ITZ. Results indicated that the porosity at each distance reduces with increasing limestone filler from 0 to 5%, and a significant increase is observed in the sample with 10% of limestone filler. The addition of 5% of limestone filler is able to densify the pore structure of both ITZ and bulk matrix. The reduction in pore volume in the range coarser than 100 nm contributed to the largest decrease in the total pores. Increasing the incorporation level of limestone filler to 10% resulted in an increase in the total porosity. The influences of slag on the porosity characteristics were highly dependent on the replacement level and the determined pore size regions. The addition of 35% of slag reduces the porosity at all distances and produces a denser microstructure both in the ITZ and bulk cement matrix. However, this improvement disappears when the substitution amount reaches to 70%. The incorporation of slag as a partial substitute for Portland cement tends to refine the pore structure
Influence of limestone filler and of the size of the aggregates on DEF
This experimental study aims to determine the effect of limestone filler on
concrete expansion due to delayed ettringite formation (DEF). Different mortars
made with different sizes and percentages of limestone filler and Portland
cement CEM I 52.5N are conserved in water. The expansion of the specimens is
measured. Results show that DEF is not inhibited by limestone filler. The
kinetics and the amplitude of the swelling depend on the size of the limestone
filler. The volume fraction of aggregates changes only the kinetics: the
relation between swelling and water uptake depends only on the size of the
aggregates.Comment: 16 pages, 9 figures, 4 table
The Influence of Limestone and Calcium Hydroxide Addition in Asphalt Concrete Mixture
As time passes, flood often occurs in the area of Gunung Sahari, Jakarta Utara. The flood damages concrete asphalt mixture and it needs particular improvement. Therefore, the purpose of this research is to know the effects of the added combination of limestone and calcium hydroxide on concrete asphalt mixture as a filler resistant to flood. Concrete asphalt mixture that filled with the combination of limestone and calcium hydroxide is a mixture that is made with non-uniform aggregat gradations, filler and liquid asphalt mixed and solidified in a heat state. Limestone and calcium hydroxide mixture is used because both materials included in the most numerous sedimentary rock. Concrete asphalt mixture with the filler combination of limestone and calciumhydroxide is made with optimum asphalt 5.4%, one variation level of limestone (15%), and calcium hydroxide (15%), and three variation levels of fillers (5%, 7.5%, and 15%) to get optimum asphalt levels and filler levels that are compatible with flood condition. Based on optimum asphalt 5.4% towards aggregate total weight and combined level of limestone and calcium hydroxide suitable for the conditions, 8.75 % towards fine aggregate weight. The characteristic value of limestone and calcium hydroxide mixture in maximum condition is VIM 4.55%, VMA 18.83%, stability 1031.26 kg and flow 4.93 mm, where the characteristic value meets the established specifications standard by Pekerjaan Umum Bina Marga. From the result, it is showed that the use of the mixture can decrease the value of stability and increase the value of flow, compared with asphalt and filler with normal levels
Treatment of end-of-life concrete in an innovative heating-air classification system for circular cement-based products
A stronger commitment towards Green Building and circular economy, in response to environmental concerns and economic trends, is evident in modern industrial cement and concrete production processes. The critical demand for an overall reduction in the environmental impact of the construction sector can be met through the consumption of high-grade supplementary raw materials. Advanced solutions are under development in current research activities that will be capable of up-cycling larger quantities of valuable raw materials from the fine fractions of End-of-Life (EoL) concrete waste. New technology, in particular the Heating-Air classification System (HAS), simultaneously applies a combination of heating and separation processes within a fluidized bed-like chamber under controlled temperatures (±600 °C) and treatment times (25–40 s). In that process, moisture and contaminants are removed from the EoL fine concrete aggregates (0–4 mm), yielding improved fine fractions, and ultrafine recycled concrete particles (<0.125 mm), consisting mainly of hydrated cement, thereby adding value to finer EoL concrete fractions. In this study, two types of ultrafine recycled concrete (either siliceous or limestone EoL concrete waste) are treated in a pilot HAS technology for their conversion into Supplementary Cementitious Material (SCM). The physico-chemical effect of the ultrafine recycled concrete particles and their potential use as SCM in new cement-based products is assessed by employing substitutions of up to 10% of the conventional binder. The environmental viability of their use as SCM is then evaluated in a Life Cycle Assessment (LCA). The results demonstrated accelerated hydration kinetics of the mortars that incorporated these SCMs at early ages and higher mechanical strengths at all curing ages. Optimal substitutions were established at 5%. The results suggested that the overall environmental impact could be reduced by up to 5% when employing the ultrafine recycled concrete particles as SCM in circular cement-based products, reducing greenhouse gas emissions by as much as 41 kg CO2 eq./ton of cement (i.e. 80 million tons CO2 eq./year). Finally, the environmental impacts were reduced even further by running the HAS on biofuel rather than fossil fuel.The authors of the present paper, prepared in the framework ofthe Project VEEP "Cost-Effective Recycling of C&DW in High AddedValue Energy Efficient Prefabricated Concrete Components forMassive Retrofitting of our Built Environment", wish to acknowl-edge the European Commission for its support. This project hasreceived funding from the European Union’s Horizon 2020 researchand innovation programme under grant agreement No 723582.This paper reflects only the author’s view and the European Com-mission is not responsible for any use that may be made of theinformation it contains.The authors are also grateful to the Spanish Ministry of Science,Innovation and Universities (MICIU) and the European RegionalDevelopment Fund (FEDER) for funding this line of research(RTI2018-097074-B-C21)
Geochemical and mineralogical characteristics of percolates and its evaporates from Technosols before and after limestone filler stabilisation
The chemistry of waters is recognized as a relevant monitoring tool when assessing the adverse effects of acid mine drainage. The weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This communication deals with the leachability of potentially toxic elements (PTE) eluting from technosols formed from soils affected by mining activities and limestone filler. A total of three contaminated soils affected by opencast mining were selected and mixed with limestone filler at three percentages: 10 %, 20 % and 30 %, providing nine stabilised samples. These samples were stored in containers and moistened simulating rainfall. The percolates obtained were collected, and the PTEs content (As, Cd, Cu, Fe, Pb and Zn) was determined. Evaporation-precipitation experiments were carried out in these waters, and the mineralogical composition of efflorescences was evaluated. The study area is heavily polluted as a result of historical mining and processing activities, producing large amount of wastes, characterised by high trace elements content and acidic pH. The results obtained for the percolates after the rain episode showed that, before the stabilization approach, waters had an acidic pH, high electrical conductivity and high PTEs content. When these soils were mixed with 10, 20 and 30 % of limestone filler, the pH was neutral and the soluble trace element content strongly decreased, being under the detection limit when limestone percentage was 20 % and 30 %. The mineralogical composition of efflorescences before the stabilisation approach showed that predominant minerals were copiapite, followed by gypsum and bilinite. Other soluble sulphates were determined in lower percentage, such as hexahydrite, halotriquite or pickeringite. After the mixing with 10 % of limestone filler, the evaporates were mainly composed by gypsum and halite. Other minerals such as starkeyite (MgSO4·4(H2O), boyleite ((Zn,Mg)SO4·4H2O), tachyhidrite (CaMg2Cl6·12H2O) or bischofite (MgCl2) were quantified in low percentages. After mixing with 20 % and 30 % of limestone filler, main minerals were gypsum and halite, the presence of other phases being scarce. The addition of limestone filler to soils polluted by potentially toxic elements represents a useful and low impact strategy for reducing the soluble fractions of As, Cd, Cu, Fe, Pb and Zn. M.H.C. acknowledges the financial support of the Comunidad Autonóma de la Región de Murcia , Spain (Fundación Séneca, 19888/GERM/15
Oolitic limestone and marine sandstone gravel aggregate Early life concrete and aggregate freeze/thaw test for durability
Oolitic limestone is one type of limestone which formed during the Jurassic period and can be found in large deposits in many areas of England. It can be used as coarse aggregate for concrete construction, however due to its porosity, it requires additional cement to maintain compressive strength, when compared to marine gravel (sandstone) concrete. Since freeze/thaw durability is one of the most common problems in temperate countries, this paper investigates the freeze/thaw resistance of Oolitic limestone itself and when used as a coarse aggregate in concrete.
The washed oolitic limestone was freeze/thaw tested to BS EN 1367 -1 :2007 and conclusions were drawn. Sixteen concrete cubes (100 mm3) were made, 8 using Oolitic limestone as a coarse aggregate and another 8 using marine gravel. Two cubes (1 Oolitic limestone, 1 marine gravel aggregate concrete) were used in a compressive strength test after 3 days of curing, to establish the strength at which the concrete was subjected to freeze/thaw action and the remaining 14 cubes were subject to freeze/thaw cycles, to a maximum of 56 cycles as informed by BS CEN/TR 15177:2006. Compressive strength, percentage mass lost and pulse velocity were compared and the results showed an equal ability to resist freeze/thaw damage when comparing the marine aggregate and oolitic limestone.
Normally, the main role of coarse aggregate in concrete is just to act as a filler which determines strength. However in the case of Oolitic limestone, which is composed mainly of calcite (calcium carbonate), further studies should be made both to determine the mineralogy and its behaviour chemically when exposed to cement paste
Similarities and differences of pumping conventional and self-compacting concrete
In Practice, Self-Compacting Concrete (SCC) is Considered as a Simple Extension of Conventional Vibrated Concrete (CVC) When Pumping is Concerned. the Same Equipment, Materials, Pumping Procedures and Guidelines Used for CVC Are Applied When Pumping SCC. on the Other Hand, It Has Been Clearly Shown that the Rheological Properties and the Mix Design of SCC Are Different Than CVC. Can the Same Pumping Principles Employed for CVC Be Applied for SCC? This Paper Compares the Some Published Results of Pumping of CVC with Those for SCC. a First Striking Difference between Pumping of CVC and SCC is the Flow Behaviour in the Pipes. the Flow of CVC is a Plug, Surrounded by a Lubricating Layer, While during the Flow of SCC, Part of the Concrete Volume itself is Sheared Inside the Pipe. as a Result, the Importance of Viscosity Increases in Case of SCC. Due to the Low Yield Stress of SCC, the Behaviour in Bends is Different, But Quite Complex to Study. Due to the Lower Content of Aggregate and Better Stability of SCC, as It is Less Prone to Internal Water Migration, Blocking is Estimated to Occur at Lower Frequency in Case of SCC. © RILEM 2010
- …
