5,537 research outputs found

    Exciton coupling induces vibronic hyperchromism in light-harvesting complexes

    Full text link
    The recently suggested possibility that weak vibronic transitions can be excitonically enhanced in light-harvesting complexes is studied in detail. A vibronic exciton dimer model which includes ground state vibrations is investigated using multi-configuration time-dependent Hartree method with a parameter set typical to photosynthetic light-harvesting complexes. Absorption spectra are discussed in dependence on the Coulomb coupling, the detuning of site energies, and the number of vibrational mode. Calculations of the fluorescence spectra show that the spectral densities obtained from the low temperature fluorescence line narrowing measurements of light-harvesting systems need to be corrected for the exciton effects. For the J-aggregate configuration, as in most of the light-harvesting complexes, the true spectral density has larger amplitude than what is obtained from the measurement.Comment: revised version (minor

    Quantum entanglement in photosynthetic light harvesting complexes

    Full text link
    Light harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long time scales despite the decohering effects of their environments. Within this context, we analyze entanglement in multi-chromophoric light harvesting complexes, and establish methods for quantification of entanglement by presenting necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to extract the initial state and temperature dependencies of entanglement. We show that while FMO in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement exists even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical utilization of entanglement in densely packed molecular aggregates such as light harvesting complexes.Comment: 14 pages, 7 figures. Improved presentation, published versio

    Superradiance Transition in Photosynthetic Light-Harvesting Complexes

    Full text link
    We investigate the role of long-lasting quantum coherence in the efficiency of energy transport at room temperature in Fenna-Matthews-Olson photosynthetic complexes. The excitation energy transfer due to the coupling of the light harvesting complex to the reaction center ("sink") is analyzed using an effective non-Hermitian Hamiltonian. We show that, as the coupling to the reaction center is varied, maximal efficiency in energy transport is achieved in the vicinity of the superradiance transition, characterized by a segregation of the imaginary parts of the eigenvalues of the effective non-Hermitian Hamiltonian. Our results demonstrate that the presence of the sink (which provides a quasi--continuum in the energy spectrum) is the dominant effect in the energy transfer which takes place even in absence of a thermal bath. This approach allows one to study the effects of finite temperature and the effects of any coupling scheme to the reaction center. Moreover, taking into account a realistic electric dipole interaction, we show that the optimal distance from the reaction center to the Fenna-Matthews-Olson system occurs at the superradiance transition, and we show that this is consistent with available experimental data.Comment: 9 page

    Modelling excitonic-energy transfer in light-harvesting complexes

    Full text link
    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require to utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.Comment: 20 pages, submitted to the AIP conference proceedings of the Latin American School of Physics Marcos Moshinsky (ELAF 2013

    Bloch-Redfield equations for modeling light-harvesting complexes

    Full text link
    We challenge the misconception that Bloch-Redfield equations are a less powerful tool than phenomenological Lindblad equations for modeling exciton transport in photosynthetic complexes. This view predominantly originates from an indiscriminate use of the secular approximation. We provide a detailed description of how to model both coherent oscillations and several types of noise, giving explicit examples. All issues with non-positivity are overcome by a consistent straightforward physical noise model. Herein also lies the strength of the Bloch-Redfield approach because it facilitates the analysis of noise-effects by linking them back to physical parameters of the noise environment. This includes temporal and spatial correlations and the strength and type of interaction between the noise and the system of interest. Finally we analyze a prototypical dimer system as well as a 7-site Fenna-Matthews-Olson (FMO) complex in regards to spatial correlation length of the noise, noise strength, temperature and their connection to the transfer time and transfer

    Identifying the quantum correlations in light-harvesting complexes

    Get PDF
    One of the major efforts in the quantum biological program is to subject biological systems to standard tests or measures of quantumness. These tests and measures should elucidate if non-trivial quantum effects may be present in biological systems. Two such measures of quantum correlations are the quantum discord and the relative entropy of entanglement. Here, we show that the relative entropy of entanglement admits a simple analytic form when dynamics and accessible degrees of freedom are restricted to a zero- and single-excitation subspace. We also simulate and calculate the amount of quantum discord that is present in the Fenna-Matthews-Olson protein complex during the transfer of an excitation from a chlorosome antenna to a reaction center. We find that the single-excitation quantum discord and relative entropy of entanglement are equal for all of our numerical simulations, but a proof of their general equality for this setting evades us for now. Also, some of our simulations demonstrate that the relative entropy of entanglement without the single-excitation restriction is much lower than the quantum discord. The first picosecond of dynamics is the relevant timescale for the transfer of the excitation, according to some sources in the literature. Our simulation results indicate that quantum correlations contribute a significant fraction of the total correlation during this first picosecond in many cases, at both cryogenic and physiological temperature.Comment: 15 pages, 7 figures, significant improvements including (1) an analytical formula for the single-excitation relative entropy of entanglement (REE), (2) simulations indicating that the single-excitation REE is equal to the single-excitation discord, and (3) simulations indicating that the full REE can be much lower than the single-excitation RE

    Dimerization-assisted energy transport in light-harvesting complexes

    Full text link
    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 (without a reaction center (RC)) to the LH1 (surrounding the RC), or from the LH2 to another LH2. The excited and un-excited states of a bacteriochlorophyll (BChl) are modeled by a quasi-spin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system and then calculate the transfer efficiency and average transfer time. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.Comment: 11 pages, 6 figure

    Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    Get PDF
    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\n20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes

    Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Get PDF
    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (∼95%) energy-transfer from fucoxanthin to chlorophyll a in the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium, Rhodospirillum rubrum G9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyll a when they are bound to the light-harvesting 1 apo-proteins
    • …
    corecore