21 research outputs found

    On construction of optimal mixed-level supersaturated designs

    Full text link
    Supersaturated design (SSD) has received much recent interest because of its potential in factor screening experiments. In this paper, we provide equivalent conditions for two columns to be fully aliased and consequently propose methods for constructing E(fNOD)E(f_{\mathrm{NOD}})- and χ2\chi^2-optimal mixed-level SSDs without fully aliased columns, via equidistant designs and difference matrices. The methods can be easily performed and many new optimal mixed-level SSDs have been obtained. Furthermore, it is proved that the nonorthogonality between columns of the resulting design is well controlled by the source designs. A rather complete list of newly generated optimal mixed-level SSDs are tabulated for practical use.Comment: Published in at http://dx.doi.org/10.1214/11-AOS877 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Review of Classical Methods in Supersaturated Designs (SSD) for factor Screening

    Get PDF
    Supersaturated designs are fractional factorial designs that have too few runs to allow the estimation of the main effects of all the factors in the experiment. There has been a great deal of interest in the development of these designs for factor screening in recent years. A review of supersaturated design is presented, including criteria for design selection, with reference to the popular E(s2) criterion and classical methods for constructing supersaturated designs. Classical methods have been suggested for the analysis of data from supersaturated designs and these are critically reviewed and illustrated. Keywords: Supersaturated, Classical method, Screening, fractional factorial and E(S2

    Construction of optimal multi-level supersaturated designs

    Full text link
    A supersaturated design is a design whose run size is not large enough for estimating all the main effects. The goodness of multi-level supersaturated designs can be judged by the generalized minimum aberration criterion proposed by Xu and Wu [Ann. Statist. 29 (2001) 1066--1077]. A new lower bound is derived and general construction methods are proposed for multi-level supersaturated designs. Inspired by the Addelman--Kempthorne construction of orthogonal arrays, several classes of optimal multi-level supersaturated designs are given in explicit form: Columns are labeled with linear or quadratic polynomials and rows are points over a finite field. Additive characters are used to study the properties of resulting designs. Some small optimal supersaturated designs of 3, 4 and 5 levels are listed with their properties.Comment: Published at http://dx.doi.org/10.1214/009053605000000688 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    On the Minimal Polynomials and the Inverses of Multilevel Scaled Factor Circulant Matrices

    Get PDF
    Circulant matrices have important applications in solving various differential equations. The level-k scaled factor circulant matrix over any field is introduced. Algorithms for finding the minimal polynomial of this kind of matrices over any field are presented by means of the algorithm for the Gröbner basis of the ideal in the polynomial ring. And two algorithms for finding the inverses of such matrices are also presented. Finally, an algorithm for computing the inverse of partitioned matrix with level-k scaled factor circulant matrix blocks over any field is given by using the Schur complement, which can be realized by CoCoA 4.0, an algebraic system, over the field of rational numbers or the field of residue classes of modulo prime number

    Construction and analysis of experimental designs

    Get PDF
    This thesis seeks to put into focus the analysis of experimental designs and their construction. It concentrates on the construction of fractional factorial designs (FFDs) using various aspects and applications. These dierent experimental designs and their applications, including how they are constructed with respect to the situation under consideration, are of interest in this study. While there is a wide range of experimental designs and numerous dierent constructions, this thesis focuses on FFDs and their applications. Experimental design is a test or a series of tests in which purposeful changes are made to the input variables of a process or system so that we may observe and identify the reasons for changes that may be noted in the output response (Montgomery (2014)). Experimental designs are important because their design and analysis can in uence the outcome and response of the intended action. In this research, analysing experimental designs and their construction intends to reveal how important they are in research experiments. Chapter 1 introduces the concept of experimental designs and their principal and oers a general explanation for factorial experiment design and FFDs. Attention is then given to the general construction and analysis of FFDs, including one-half and one-quarter fractions, Hadamard matrices (H), Balanced Incomplete Block Design (BIBD), Plackett-Burman (PB) designs and regression modelling. Chapter 2 presents an overview of the screening experiments and the literature review regarding the project. Chapter 3 introduces the rst part of the project, which is construction and analysis of edge designs from skew-symmetric supplementary dierence sets (SDSs). Edge designs were introduced by Elster and Neumaier (1995) using conference matrices and were proved to be robust. One disadvantage is that the known edge designs in the literature can be constructed when a conference matrix exists. In this chapter, we introduce a new class of edge designs- these are constructed from skew-symmetric SDSs. These designs are particularly useful, since they can be applied in experiments with an even number of factors, and they may exist for orders where conference matrices do not exist. The same model robustness is archived, as with traditional edge designs. We give details of the methodology used and provide some illustrative examples of this new approach. We also show that the new designs have good D-eciencies when applied to rst-order models, then complete the experiment with interaction in the second stage. We also show the application of models for new constructions. Chapter 4 presents the second part of the project, which is construction and analysis two-level supersaturated designs (SSDs) from Toeplitz matrices. The aim of the screening experiments was to identify the active factors from a large quantity of factors that may in uence the response y. SSDs represent an important class of screening experiments, whereby many factors are investigated using only few experimental runs; this process costs less than classical factorial designs. In this chapter, we introduce new SSDs that are constructed from Toeplitz matrices. This construction uses Toeplitz and permutation matrices of order n to obtain E(s2)- optimal two-level SSDs. We also study the properties of the constructed designs and use certain established criteria to evaluate these designs. We then give some detailed examples regarding this approach, and consider the performance of these designs with respect to dierent data analysis methods. Chapter 5 introduces the third part of the project, which is examples and comparison of the constructed design using real data in mathematics. Mathematics has strong application in dierent elds of human life. The Trends in International Mathematics and Science Study(TIMSS) is one of the worlds most eective global assessments of student achievement in both mathematics and science. The research in this thesis sought to determine the most eective factors that aect student achievement in mathematics. Four identied factors aect this problem. The rst is student factors: age, health, number of students in a class, family circumstances, time of study, desire, behaviour, achievements, media (audio and visual), rewards, friends, parents' goals and gender. The second is classroom environment factors: suitable and attractive and equipped with educational tools. The third is curriculum factors: easy or dicult. The fourth is the teacher: wellquali ed or not, and punishment. In this chapter, we detailed the methodology and present some examples, and comparisons of the constructed designs using real data in mathematics . The data comes from surveys contacted in schools in Saudi Arabia. The data are collected by the middle stage schools in the country and are available to Saudi Arabian citizen. Two main methods to collect real data were used: 1/ the mathematics scores for students' nal exams were collected from the schools; 2/ student questionnaires were conducted by disseminating 16-question questionnaires to students. The target population was 2,585 students in 22 schools. Data were subjected to regression analyses and the edge design method, with the nding that the main causes of low achievement were rewards, behaviour, class environment, educational tools and health. Chapter 6 surveys the work of this thesis and recommends further avenues of research

    The Annals of Statistics CONSTRUCTION OF OPTIMAL MULTI-LEVEL SUPERSATURATED DESIGNS

    Get PDF
    A supersaturated design is a design whose run size is not large enough for estimating all the main effects. The goodness of multi-level supersaturated designs can be judged by the generalized minimum aberration criterion proposed by Inspired by the Addelman-Kempthorne construction of orthogonal arrays, several classes of optimal multi-level supersaturated designs are given in explicit forms: Columns are labeled with linear or quadratic polynomials and rows are points over a finite field. Additive characters are used to study the properties of resulting designs. Some small optimal supersaturated designs of 3, 4 and 5 levels are listed with their properties

    LASSO-OPTIMAL SUPERSATURATED DESIGN AND ANALYSIS FOR FACTOR SCREENING IN SIMULATION EXPERIMENTS

    Get PDF
    Complex systems such as large-scale computer simulation models typically involve a large number of factors. When investigating such a system, screening experiments are often used to sift through these factors to identify a subgroup of factors that most significantly influence the interested response

    Not Available

    No full text
    Not AvailableThis article proposes an algorithm to construct efficient balanced multi-level k-circulant supersaturated designs with m factors and n runs. The algorithm generates efficient balanced multi-level k-circulant supersaturated designs very fast. Using the proposed algorithm many balanced multi-level supersaturated designs are constructed and cataloged. A list of many optimal and near optimal, multi-level supersaturated designs is also provided for m ≤ 60 and number of levels (q) ≤10. The algorithm can be used to generate two-level k-circulant supersaturated designs also and some large optimal two-level supersaturated designs are presented. An upper bound to the number of factors in a balanced multi-level supersaturated design such that no two columns are fully aliased is also provided.Not Availabl

    Not Available

    No full text
    Not AvailableThis article proposes an algorithm to construct efficient balanced multi-level k-circulant supersaturated designs with m factors and n runs. The algorithm generates efficient balanced multi-level k-circulant supersaturated designs very fast. Using the proposed algorithm many balanced multi-level supersaturated designs are constructed and cataloged. A list of many optimal and near optimal, multi-level supersaturated designs is also provided for m60 and number of levels (q) 10. The algorithm can be used to generate two-level k-circulant supersaturated designs also and some large optimal two-level supersaturated designs are presented. An upper bound to the number of factors in a balanced multi-level supersaturated design such that no two columns are fully aliased is also provided.Not Availabl
    corecore