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PREFACE

Complex systems such as large-scale computer simulation models typically involve

a large number of factors. When investigating such a system, screening experiments

are often used to sift through these factors to identify a subgroup of factors that

most significantly influence the interested response. The identified factors are then

subject to further and more carefully investigation. A good screening experiment can

efficiently allocate the experimental resources to those important factors, and can

therefore greatly expand the ability of analysts and decision makers to gain insights

from a complicated system with a reasonable amount of cost. In our work, we propose

a unified framework for design and analysis of screening experiments with application

in large scale simulation models. In particular, we use supersaturated designs as the

general design strategy for the experiment of the screening process and further to use

the lasso based variable selection methods as the general approach for the analysis.
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ABSTRACT

Xing, Dadi Ph.D., Purdue University, December 2015. LASSO-OPTIMAL SUPER-
SATURATED DESIGN AND ANALYSIS FOR FACTOR SCREENING IN SIMU-
LATION EXPERIMENTS . Major Professor: Hong Wan and Michael Yu Zhu.

Complex systems such as large-scale computer simulation models typically involve

a large number of factors. When investigating such a system, screening experiments

are often used to study these factors to identify a subgroup of factors that most

significantly influence the interested response.

A typical screening procedure consists of two steps: the experiment step and

the analysis step. With a large number of factors, both of these two steps can be

extremely challenging in practice. Currently there exists a disparity between the

experimental designs and the analysis methods used for screening experiments. To

address this disparity, our work focuses on analysis-method-directed optimal super-

saturated designs for high-dimensional screening experiments. We use supersaturated

designs and Lasso for the two steps of screening experiments, respectively; and we

propose to optimize supersaturated designs toward the best performance of the Lasso.

Specifically, we studied the variable selection performances of the lasso under finite

samples and establish the exact relationship between the performances and the de-

sign matrix; we then developed the optimality criteria for constructing supersaturated

designs that guarantee optimal variable selection performance, we studied the theo-

retical properties of the proposed criteria, and further developed efficient algorithms

to construct optimal supersaturated designs. We also developed a software package

capable of constructing optimal supersaturated designs and analyzing data generated

from supersaturated experiments, and applied the package to study mission critical
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computer simulation models. We expect the research to advance the experimental

design frontier and have significant impact on analysis of large systems.
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1. INTRODUCTION

1.1 Screening Experiment

1.1.1 General Introduction

Complex systems such as large scale computer simulation models typically involve

a large number of factors. Here ”factors” refers to parameters or input variables that

may influence the performance of a system [1], and their levels can be continuous or

discrete. When investigating such a system, screening experiments are commonly used

to sift through the factors to identify a subgroup that significantly affects the system

based on a certain performance measure. The identified factors are then subject

to further investigation. The sparsity of effects principle is often used to justify

screening experiments, which states that in general only a small number of factors

are responsible for most of the variation in a given response [2]. A successful screening

experiment can help investigators allocate experimental resources to important factors

and gain insights from a complicated system at a reasonable amount of cost.

The demand for efficient and effective methods for design and analysis of screening

experiments arises in a variety of application areas. One such area is the analysis of

large-scale simulated systems. Despite the prevalence of using simulated systems as a

decision-support tool, there exists a huge gap between the complexity of the systems

and the availability of proper methods that can be used to investigate and analyze

these systems. A simulation system may take months or years to develop and has

literally thousands of components (factors) with unknown effects on the system’s

performance. For example, drug screening, the computer simulation of nuclear test

and the Future Combat Systems Family(FCS) from the United States Department of

Defense, the . A single simulation experiment takes many hours or days to run with
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as many as 100,000 user selectable input values [3]. Therefore efficient and effective

analytical methods for such a large experiments become critical. The lack of these

methods severely limits investigators or decision makers’ capability to gain insights

about the systems. The primary goal of this work is to develop a general framework

with effective statistical methods for design and analysis of screening experiments to

bridge the afore-mentioned gap.

1.1.2 Two Step of Screening Experiment

A typical screening process consists of two steps: the experiment step and the

analysis step. During the experiment step, the factors under study are systematically

varied and the response variable of interest is measured; and during the analysis step,

the generated data are analyzed to identify the important factors. Due to the presence

of a large number of factors, both of these two steps can be extremely challenging in

practice. For the experiment step, proper experimental design strategies are needed

to manipulate the tens of thousands of factors, whereas for the analysis step, efficient

and effective analysis methods are required in order to identify the important factors

with limited data.

1.1.2.1 Experiment Step

To overcome the challenge in the experiment step, various techniques have been

proposed in the literature and used in practice, which include sequential strategies

and group designs. Sequential design updates the experimental design while collect-

ing observations in a sequential manner, typically using Bayesian analysis and proper

optimization criteria [4] [5] [6]. It is based on the idea that more observations result

in more information and further lead to better selection of design points. To han-

dle large-scale screening experiments, the most common sequential approach is group

design. Group design is to arrange factors into groups and then treat each group

as a factor and design the experiment accordingly. One popular method for group
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design is sequential bifurcation and its stochastic version, controlled sequential bifur-

cation [7] [8]. For factorial group designs, see Dean and Lewis [9]. While the group

design strategy can significantly reduce the number of factors in an experiment, its

disadvantage is also obvious.

When factors with positive and negative effects are grouped together, they will

cancel each other. Therefore, the group design strategy relies on prior knowledge of

the system. Furthermore, a group design become inefficient when important factors

are not grouped together and dispersed into different groups [10].

An alternative design strategy for large scale screening experiments is to use su-

persaturated designs. A supersaturated design is a fractional factorial design with

more factors than experimental runs, which does not have sufficient degrees of free-

dom for estimating all main effects of the factors. Supersaturated designs were first

formally introduced by Booth and Cox [11]. The papers by Lin [12] and Wu [13] has

stimulated the interest and research effort in supersaturated designs, and since then,

various approaches or criteria, theoretical or numerical, have been proposed for con-

structing supersaturated designs in the literature. The most compelling motivation

for the supersaturate design strategy is that it shares the same basic principle (i.e.

the sparsity of effects principle) as screening experiments. The second motivation is

that the number of runs required by a supersaturated design is much smaller than

the number of factors, therefore, it is most suitable for screening experiments involv-

ing a large number of factors. And the third motivation is that recent advances on

variable selection in high dimensional data analysis not only provide effective tools

for identifying important factors from data generated from supersaturated screening

experiments but also help unify the theory and methods used in both the experiment

and analysis steps of these experiments.
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1.1.2.2 Analysis Step

As discussed previously, the analysis step of a screening process is to identify a

subgroup of important factors; and thus it is essentially a variable selection step.

Classical variable selection methods include stepwise regression, best subset selec-

tion, Mallow’s Cp [14], Akaike Information criterion (AIC) [15], Bayesian Information

Criterion (BIC) [16], and cross validation [17]. Although popular in practice and

based on straightforward heuristics, stepwise regression is known to be unstable, can

lead to erroneous selection results, and its statistical properties are still not well

understood [18]. The other variable selection methods requires comparing all pos-

sible subsets of factors or sub-models, and thus are computationally intensive and

can quickly become infeasible when the total number of factors increases. When the

number of observations is much smaller than the number of factors, which is referred

to as the large p small n scenario, the classical variable selection methods become

ineffective.

In the past decade, advances in sciences and technology has brought about an

explosion of high dimensional data in a variety of areas, and many of these data

sets fit into the large p and small n scenario. The demand for high dimensional

data analysis tools motivated researchers especially statisticians to develop effective,

stable and computationally feasible solutions. The Least Absolute Shrinkage and

Selection Operator (lasso) proposed by Tibshirani [19] is the pioneer of a family of

methods that use L1 penalty to regularize regression and perform variable selection

in high dimensional data analysis. The lasso become extremely popular after efficient

computing algorithms have been developed [20] [21]. Motivated by the lasso, other

L1 penalty based methods have also been proposed, including the smoothly clipped

absolute deviation (SCAD) method by Fan and Li [22], adaptive lasso [23], and the

Dantzig Selector by Candes and Tao [24]. Some of these methods were used to

analyze data generated from supersaturated experiments. Li and Lin [25] proposed

to use SCAD to identify important factors and showed that it outperformed stepwise
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regression in simulation. Yuan et al. [26] proposed to use the lasso to select variables

when analyzing designed experiments, and Phoa et al. [27] used the Dantzig selector

to analyze supersaturated designs. These works have demonstrated the potential

of using the lasso and other variants as variable selection methods for analyzing

supersaturated experiments.

1.1.2.3 Disparity between the Two Steps

In a review paper on factor screening via supersaturated designs, Gilmour [28]

pointed out that there exists a disparity between the construction of supersaturated

designs and their analysis in the literature, that is, most existing optimality criteria

for constructing supersaturated designs appear to be unrelated to the methods used

for analyzing the generated data. For example, the minimum r and E(s2) criteria [11]

are the two most popularly used and studied optimality criteria for supersaturated

designs. Here r and E(s2) are the maximum and average correlation between any two

factors in a supersaturated design, respectively. However, it is not clear how r and

E(s2) affects the variable selection results in the analysis step when classical variable

selection methods are used, and this issue has never been carefully investigated in the

literature. One of the major causes for this disparity is that the impacts of the design

matrix on the performance of most classical variable selection methods are difficult

to understand and assessed.

The adoption of the lasso and other L1 penalty based variable selection methods

for supersaturated design can potentially resolve the disparity mentioned above. Un-

like classical variable selection results, the lasso and other L1 penalty based methods

can be cast as penalized least squares problems and are continuous in nature. There-

fore, it is possible to understand the role the design matrix plays in variable selection

when the lasso and other L1 penalty methods are used, and furthermore, it is also

possible to construct a supersaturated design that is optimal in terms of delivering

best variable selection performance. In order to materialize these two possibilities,
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the exact relationship between the variable selection performance of the lasso and

the design matrix needs to be established, especially under a finite sample. (Design

of experiment is usually a finite sample problem). Although there have been a large

amount of research results on the variable selection performance of the lasso reported

in the literature, they are mostly asymptotic results and not directly applicable for

design of experiment. Fortunately, thanks to the penalized least squares setup, the

properties of the lasso under finite samples can also be studied and established.

1.2 Supersaturated Designs (SSD)

For ease of discussion, we assume that all the factors have two levels with − and

+ denoting the low and high levels, respectively, in the rest of this dissertation. All

the discussion can be extended to supersaturated designs involving factors with more

than 2 levels. For a SSD with n runs and p factors with n < p, denoted by dn,k, it

can be represented by a n × p array of −’s and +’s with rows as runs and columns

as the settings of the factors. For example, given below is a 6 × 10 supersaturated

design with 10 factors and 6 runs:

+ + - + + + - - - +

+ + + - - - + - + +

- - + - + + - + + +

- + - + + - + + + -

+ - + + - + + + - -

- - - - - - - - - -

In general, X1, X2, . . ., and Xp are used to denote the factors as well as their cor-

responding columns in dn,p. Let sij = X ′iXj for 1 ≤ i, j ≤ p where prime represents

the transpose, and let S = (sij). If sij = 0, then the two columns Xi and Xj are

orthogonal to each other. Because n < p, it is not possible to make all sij’s equal to

zero, that is, orthogonal supersaturated designs do not exist. The nonzero sij’s reflect

the departure of a supersaturated design from orthogonality. Based on them, Booth
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and Cox [11] proposed two criteria, the minimum r and minimum E(s2) criteria, for

constructing supersaturated design. Let

r = max1≤i<j≤p sij, and E(s2) =
1

p(p− 1)

∑
1≤i<j≤p

s2ij.

Both of these two criteria are based on correlations between the design columns or

factors. A supersaturated design is said to be a minimum r supersaturated design if

it attains the minimum r among all SSDs with same n and p. Similarly, a SSD is said

to be a minimum E(s2) design if it attains the minimum E(s2) among all the SSDs

with same n and p. As the measure of the nonorthogonality, the former one is the

the maximum correlation between two factors and latter one is the expected squared

correlation between any two factors.

To reflect the estimation efficiency and multi-factor orthogonality, Wu ( [13])

proposed the Df - and Af - criteria for selecting optimal SSDs. For k ≥ 2, let s =

{i1, i2, . . . , ik} ⊆ {1, 2, . . . , p} and Xs = {Xi1 , . . . , Xik}. Define

Dk =

(
p

k

)−1 ∑
|s|=k

|n−1X ′sXs|1/k,

and

Ak =

(
p

k

)−1 ∑
|s|=k

k−1trace(n−1X ′sXs)
−1,

Where Dk and Ak are the average D− and A− optimality of the k-factor pro-

jections. The optimal SSDs could be achieved by maximizing the Dk criterion and

Minimizing the Ak criterion [13].

Given an optimality criterion, there are two major approaches to constructing

optimal SSDs. One approach is to develop systematic methods to construct optimal

SSDs, and the other is to develop efficient search algorithms to search SSDs. In the

literature, both of these two approaches have been used.

The construction methods based on the Hadamard matrices was first investigated

by Lin and Wu ( [29]), Tang and Wu ( [30]) and Cheng ( [31]); Then the construction

methods based on balanced incompleted block designs have been discussed by Nguyen
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( [32]), Cheng ( [31]), Bulutoglu and Cheng ( [33]); The cyclic methods of construction

have been explored also, for example, by Liu and Zhang ( [34]), Eskridge et al. ( [35]),

Liu and Dean ( [36]), and Georgiou ( [37]). Theoretical study of SSDs has been focused

on establishing the bounds of the optimality criteria. For given n and p, various lower

bounds for E(s2) has been obtained, such as the Nguyen-Tang-Wu bound and the

improved lower bound derived by Butler, Mead, Eskridge and Gilmour ( [38]). For

some recently obtained bounds, see Bulutoglu and Cheng ( [33]) and Bulutoglu and

Ryan ( [39]).

The construction methods always require certain relationship between n and p,

therefore they may fail for certain design problems. For example, the method to use

a half fraction of a Hadamard matrix (HFHM) ( [12]) can only construct SSD of size

(n, p) = (2t, 4t− 2), (t ≥ 3); The Es2 optimal design provided by Tang and Wu [30]

using Hadamard matrices require p=q(n-1) factors, q is integer; The optimal designs

generated by BIBD or cyclic methods can makeup where some Hadamard matrix

methods fails but still are restricted by some constrains of the values of n and p.

To generate the optimal SSD with any value of n and p, the computer algorithmic

methods have been employed. For example, Johnson and Nachtsheim ( [40]) propose

the k-exchange method to iteratively change the row of design to subsequently achieve

optimal designs for given criterion. Lin ( [41]) develop the algorithm by randomly

permuting the signs of the column candidates; Nguyen (1996) using the idea of Near-

Orthogonal Arrays (NOA) to achieve the optimal designs by pairwise permuting the

signs in columns; Wu and Li ( [29]) improved the algorithm by using columnwise-

pairwise (CP) exchange method.

However, the above searching algorithms may not be always reliable, particularly

as the number of experimental runs n increases. For example, Cheng ( [31]) showed

that the design found by search algorithm and reported by Nguyen ( [32]) for n = 18

and m = 36 is not in fact Es2 optimal designs. Moreover, these algorithms are all

employing random permuting or exchanging, therefore they lead to a great amount

of computation for large numbers of runs such as n = 46 or n = 98. These approach
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usually suffers from low efficiency due to the potential large number of low quality

columns generated. Moreover, most construction or searching methods are based on

Es2, as well as the theoretical study on establishing the bounds of the optimality

criteria. For given n and p, various lower bounds for E(s2) has been obtained; for

some recently obtained bounds, see [33] and [39].

As discussed in the introduction, there exists a disconnection between the opti-

mality criteria for constructing SSDs and the ultimate purpose of using such designs

for variable selection or factor screening.

For example, whether an optimal SSD in the sense of the minimum E(s2) criterion

can lead to optimal results in factor screening is generally unclear.

The major cause for the disconnection is due to the lack of a unified and system-

atic method for analyzing data generated from supersaturated experiments. When

classical variable selection methods such as AIC are used, the connection between the

supersaturated design matrix and the final variable selection results is generally un-

clear. Therefore, optimal SSDs do not guarantee best variable selection performances.

On the other hand, although the asymptotic behaviors of most classical methods are

understood [42], they do not provide insights about how to best construct designs or

supersaturated designs when collecting only finite samples.

Recently, as discussed in the introduction, the lasso and other L1 penalty based

methods become popular for parameter estimation and variable selection in high di-

mensional data analysis. Simulation studies and applications show that these meth-

ods are much more effective than classical methods [43]. Because these methods are

framed to solve penalized least square or penalized likelihood problems, their prop-

erties can be carefully studied, and it is possible to relate the property of a selected

designs to its performance in variable selection. The relationship can then be used to

develop criteria for constructing optimal design for the purpose of variable selection.
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1.3 Lasso

The least absolute shrinkage and selection operator (lasso) proposed by Tibshi-

rani ( [19]) is the forerunner of a family of methods that use L1 penalty to regularize

parameter estimation and perform variable selection. Some recent extensions of lasso

include fused-lasso [44], group-lasso [45] and adaptive lasso [23]. We focus on the

original lasso and its performance as a variable selection method in this article. Nev-

ertheless, the concepts and methods we develop in this article can be extended to the

aforementioned extensions of lasso.

Consider the linear regression model

Y = Xβ0 + ε, (1.1)

where Y = (Y1, Y2, . . . , Yn)′ is an n dimensional vector of observed responses, X

is an n × p design matrix, β0 = (β0
1 , β

0
2 , . . . , β

0
p)
′ is a p dimensional vector of true

regression coefficients, and ε = (ε1, ε2, . . . , εn)′ is the vector of experiment errors that

are independent and identically distributed as N(0, σ2). Denote the p columns of X

as X1, X2, . . ., and Xp, respectively. The lasso estimate of β0, denoted by β̂λ, is the

solution of the following L1-penalized least squares problem,

β̂λ = arg min
β∈Rp
{‖Y −Xβ‖22 + λ

p∑
i=1

|βi|}, (1.2)

where
∑p

i=1 |βi| is the L1 norm penalty function of β, and λ is the tuning parameter

that controls the amount of penalty.

The lasso estimate β̂λ depends on λ, and the trajectory of β̂λ as λ decreases from a

certain large value to zero is referred to as the lasso solution path. Efron [21] showed

that the lasso solution path is piecewise linear and proposed an algorithm based

on Least Angle Regression (LARs) to efficiently compute the lasso solution path.

The LARs algorithm gives lasso a computational advantage over other conventional

variable selection methods. Rosset and Zhu ( [46]) gave a concise characterization of

the lasso solution path. Faster algorithms such as the coordinate decent algorithm [47]

have been further developed for computing the lasso solution path. As λ decreases,
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the components of β̂λ change from zero to nonzero or from nonzero to zero in a

one by one fashion. At a fixed λ, we refer to the model that includes only the

variables with nonzero coefficients as the model selected by lasso at λ. Therefore,

lasso adds or removes variables from the selected model and generates a sequence

of models as λ changes. To obtain the final model for use in practice, one needs to

properly determine the magnitude of the tuning parameter λ. Zou and Tibshirani [48]

investigated the application of cross validation (CV), Akaike Information Criterion

(AIC), and Bayesian Information Criterion (BIC) in determining λ. We refer to lasso

combined with CV, AIC, or BIC as CV-lasso, AIC-lasso, or BIC-lasso, respectively,

in this article.

The performance of lasso can be assessed by two different types of criteria, which

are lasso’s accuracy in estimation and lasso’s accuracy in variable selection, respec-

tively. In our research, we only focus on lasso’s variable selection accuracy, partic-

ularly under finite samples, which is consistent to the purpose of the experiment

designs.

1.4 The Contribution and Outline

Our goal in this dissertation is to develop a unified framework for design and anal-

ysis of screening experiments with application in large scale simulation models. In

particular, we use supersaturated designs as the general design strategy for the experi-

ment step of the screening process and further to use the lasso based variable selection

methods as the general approach for the analysis step. In chapter 2, we studied the

variable selection performances of the lasso under finite samples scenarios and derive

explicit formulas for the probability that lasso selects all true variables at any fixed λ.

We further develop a self-voting procedure to approximate the optimal λ and propose

to use the resulting approximate value as the selected tuning parameter in practice.

In chapter 3, we proposed optimality criteria for constructing supersaturated designs

that guarantee optimal variable selection performance based on the results from chap-
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ter 2, we study the theoretical and practical properties of the proposed criteria, and

further develop efficient algorithms to construct optimal supersaturated designs. We

develop a software package capable of constructing optimal supersaturated designs

and analyzing data generated from supersaturated experiments. One real example

are discussed in chapter 4 to demonstrate how to apply the framework proposed to

the real world problem and concluding remarks are made in chapter 6.
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2. FINITE SAMPLE PROPERTIES OF LASSO

2.1 Probability of Sign-Correct Selection

In the linear model (1.1), X1, X2, . . ., and Xp are used to denote the columns of X.

For ease in discussion, X1, X2, . . ., and Xp are also used to denote the independent

variables that correspond to the columns of X. For 1 ≤ i ≤ p, Xi is said to be a true

variable if β0
i 6= 0; otherwise, Xi is said to be an untrue variable. Let A = {i : β0

i 6= 0}

and C = {i : β0
i = 0} be the collections of the indexes of the true and untrue variables,

respectively. For any fixed λ, define Âλ = {j : β̂λj 6= 0}, which is the collection of

the indexes of the variables selected by lasso at λ, and Ĉλ the complement of Âλ. As

mentioned in the Introduction, when λ is sufficiently large, all the entries of β̂λ are

equal to zero, and Âλ = ∅; As λ decreases, variables will be added into or removed

from Âλ step by step, and β̂λ will change in a piece-wise linear fashion [21]

The magnitude of λ determines how many and which will be selected by lasso.

For given λ, we say lasso achieves ordinary correctness (OC) in variable selection if

Âλ = A. Let sgn(·) be the sign function such that sgn(x) = 1, if x > 0; = 0, if x = 0;

and = −1, if x < 0. We say lasso achieves sign correctness (SC) in variable selection

if sgn(β̂λ) = sgn(β0), that is, lasso not only selects all true variables (i.e., Âλ = A)

but also estimates the coefficients of the true variables with correct signs. Note that

sign correctness implies ordinary correctness, but the converse is not generally true.

For given X, we define the probability that lasso achieves OC in variable selection

at λ as POC(λ) = P (Âλ = A) and the probability that lasso achieves SC in variable

selection at λ as PSC(λ) = P (sgn(β̂λ) = sgn(β0)). Clearly, POC(λ) ≥ PSC(λ).

The two types of variable selection correctness defined above are related to lasso’s

variable selection consistency and sign consistency discussed in the literature of lasso;
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however, a key difference exists. We discuss the difference between sign correctness

and sign consistency as an example. Sign consistency is an asymptotic property that

holds under the irrepresentable condition [49] and a properly selected sequence of λ

as n goes to infinity, whereas sign correctness is a sampling property of lasso under a

fixed sample of size n and a fixed value of λ. Therefore, we can discuss the probability

that lasso achieves sign correctness in variable selection, whereas it does not make

sense to discuss the probability that lasso is sign consistent. A connection between

sign correctness and sign consistency of lasso does exist. The sign consistency of lasso

can be stated as follows. Under the irresponsible condition, there exists a sequence of

λ values, denoted as {λn}, such that lasso’s sign correctness probability PSC(λn)→ 1

as n→∞. In this article, we are interested in lasso’s variable selection performance

under finite samples, that is, we are interested in PSC(λ) under sample size n rather

than the limit of PSC(λn) as n→∞.

Next, we obtain the explicit formulas for PSC(λ) and POC(λ) under finite sam-

ple size n. Let XA and β0
A be the restrictions of X and β0 to the true variables

in A, respectively. Let XC and β0
C be the complements of XA and β0

A in X and

β0, respectively. Define P = XA(X ′AXA)−1X ′A, R = X ′CXA(X ′AXA)−1sgn(β0
A), and

D = λ
2
(X ′AXA)−1sgn(β0

A). The following theorem presents the exact formula for the

probability that lasso achieves SC in variable selection under given sample size n,

design matrix X, and tuning parameter λ. Without loss of generality, we assume

there are q true variables and further the q true variables are X1, X2, ..., Xq. In other

words, we assume A = {1, 2, . . . , q} and C = {q + 1, q + 2, . . . , p}.

Theorem 1. Assume U = (U1, U2, . . . , Up−q)
′ follows the normal distribution

N(R, σ
2

λ2
X
′
C(I − P )XC), and V = (V1, V2, . . . , Vq)

′
follows the normal distribution

N(D, σ2(X ′AXA)−1). The Probability that lasso achieves sign correctness in variable

selection at λ, denoted as PSC(λ), is

PSC(λ) = P (E1)P (E2), (2.1)

where E1 is the event of
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{−1 ≤ U ≤ 1} , (2.2)

and E2 is the complement of

q⋂
i=1

{min(0, Vi) ≤ β0
i ≤ max(0, Vi)}. (2.3)

The proof of Theorem 1 is given in the Appendix. Theorem 1 is in the same

spirit as Proposition 1 in [49], but the two results are different. Theorem 1 gives the

exact probability that lasso achieve SC in variable selection, whereas Proposition 1

in [49] provides a lower bound of the same probability. Because [49] focused on lasso’s

asymptotic behavior, the lower bound turns out to be sufficient. In this article, we

instead consider lasso’s finite sample behavior, therefore, it is critical to obtain the

exact probability. The two events E1 and E2 in Theorem 1 represent the necessary

and sufficient conditions for lasso to choose the true variables with correct signs. E1
focuses on the selection of the true variables, while E2 is to ensure that the signs of

the chosen variables are correct.

With fixed A, β0, λ and σ2, the probabilities of E1 and E2 depend on the mean

vectors and covariance matrices of U and V , which are R, 4σ2

λ2
X
′
C(I − P )XC , λ

2
D,

and σ2(X ′AXA)−1, respectively. Using P (E1) and P (E2), under the irrespresentable

condition |R| < 1, it can be shown that lasso is asymptotically sign consistent, that

is, PSC(λ) = P (E1)P (E2) goes to 1 as n goes to infinity and λ is chosen such that

λ/n → 0 and λ/n( 1+c
2

) → ∞ with 0 < c < 1. Therefore, asymptotically, PSC(λ) is

determined by the magnitude of R. This however is not true when the sample size n

is finite.

When n is finite, PSC(λ) depends on all four terms listed in the previous paragraph

through the two independent normal distributions U and V given in Theorem 1. We

first exam the dependence of PSC(λ) on β0. Notice that E1 only depends on the

sign but not the magnitude of β0
A, while E2 depends on both the sign and magnitude

of β0
A. With fixed sign, when β0 increases in magnitude, that is, the strength of

signal increases, P (E1) does not change while P (E2) increases, which makes PSC(λ)
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increase. Second, we exam the dependence of PSC(λ) on λ. Notice that λ appears in

the variance of U as well as in the mean of V . As λ decreases to zero, P (E1) decreases

to zero while P (E2) increases to 1; and as λ increases to infinity, P (E1) increases to

1 while P (E2) decreases to zero. Therefore, a global maximum of PSC(λ) exists. We

refer to the value of λ that attains the maximum of PSC(λ) as the optimal tuning

parameter and denote it as λopt, that is,

λopt = argmaxλPSC(λ) = argmaxλP (E1)P (E2). (2.4)

At λ = λopt, lasso achieves the largest probability PSC(λopt) that it selects all true

variables with correct signs. When X and β0 are known, λopt can be calculated at

least numerically by solving the optimization problem ( 2.4). In practice, however,

β0 is unknown and needs to be estimated from data. In Section 2.3, using ( 2.4), we

will propose an iterative procedure to approximate λopt, and the result will be further

used for lasso to select the true variables.

As noted before, sign correctness in variable selection implies ordinary correctness,

because ordinary correctness only requires Â = A but not sgn(Â) = sgn(β0
A). In other

words, ordinary correctness only requires that lasso select all of the true variables (i.e.

Â = A), but the signs of β̂λi for i ∈ Â can be arbitrary. Therefore, sgn(β̂λA) can be any

q-dimensional vector of +1’s and -1’s. The total number of such vectors is 2q, which

we denote as δ(1), δ(2), ..., δ(2
q), respectively. Without loss of generality, we assume

δ(1) = sgn(β0
A). For 1 ≤ k ≤ 2q, define R(k) = X ′CXA(X ′AXA)−1δ(k) and D(k) =

(X ′AXA)−1δ(k). Let U (k) = (U
(k)
1 , U

(k)
2 , . . . , U

(k)
q )

′
and V (k) = (V

(k)
1 , V

(k)
2 , . . . , V

(k)
q )

′
;

and we assume U (k) and V (k) follow the normal distributions N(R(k), 4σ
2

λ2
X
′
C(I−P )XC)

and N(D(k), σ2(X ′AXA)−1), respectively. Assume further that U (k)’s and V (k)’s are

independent for 1 ≤ k ≤ 2q. The probability that lasso selects all of the true variables

with or without correct signs, denoted by POC(λ), is given in the following Theorem.

Theorem 2. The probability that the lasso achieves ordinary correctness in vari-

able selection is

POC(λ) = PSC(λ) +
2q∑
k=2

P (E (k)1 )P (E (k)2 ), (2.5)
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where E (k)1 is the event

{
−1 ≤ U (k) ≤ 1

}
, (2.6)

E (k)2 is the event

{(
⋂

i:δ
(k)
i =−δ(0)i

E (k)Vi
)
⋂

(
⋂

i:δ
(k)
i =δ

(0)
i

E (k)cVi
)}, (2.7)

E (k)Vi
is the event {min(0, Vi) ≤ β̂

(k)
i ≤ max(0, Vi)}, and E (k)cVi

is the complement of E (k)Vi

for k = 1, 2, ..., 2q and i = 1, 2, ..., q.

The proof of Theorem 2 is given in the Appendix. Obviously, POC(λ) ≥ PSC(λ).

It can also be shown that the difference of POC(λ) and PSC(λ) will decrease to 0 when

n increases to infinity.

2.2 Evaluation of P (E1) and P (E2) in high dimensions

The direct evaluation and optimization of P (E1) and P (E2) with respect to β, λ or

X involves high dimensional integration, which can become computationally infeasible

as the dimension p increases. In this section, we propose two different approaches to

approximating P (E1)and P (E2) in high dimensional cases, which use lower bounds

and Monte Carlo simulation, respectively.

2.2.1 Lower bounds of P (E1) and P (E2)

One approach to alleviating the computational burden in evaluating P (E1) and

P (E2) is to consider their lower bounds that do not involve high dimensional integra-

tion. For the purpose of selecting the optimal tuning parameter λopt, these bounds

sometimes can be sufficient. In what follows, we report such bounds we have obtained.

Recall the two probabilities P (E1) and P (E2) are defined by the random vec-

tors U and V , respectively, with U and V following N(R, 4σ
2

λ2
X
′
C(I − P )XC) and
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N(λ
2
D, σ2(X ′AXA)−1). Let R = (R1, R2, . . . , Rp−q)

′, and (σ2
U1
, σ2

U2
, . . . , σ2

Up−q
)′ the vec-

tor of the diagonal elements of 4σ2X
′
C(I − P )XC . Let D = (D1, D2, . . . , Dq)

′, and

(σ2
V1
, σ2

V2
, . . . , σ2

Vq
)′ the vector of the diagonal elements of σ2(X ′AXA)−1. Let I(·) be

the indicator function such that I(E) = 1 if E is true; and = 0, otherwise. Let Φ()̇ be

the cumulative distribution function of the standard normal distribution. The next

proposition provides lower bounds for P (E1) and P (E2), respectively.

Proposition 1. A lower bound for P (E1), denoted as P (E1)low, is

P (E1)low = max

(
0, 1− 1

λ
√

2π

p−q∑
j=1

σUj (I(|Rj| < 1)Q1(j) + I(|Rj| > 1)Q2(j) + I(|Rj| = 1)Q3)

)
(2.8)

where

Q1(j) = [
1

(1 +Rj)
exp{−λ

2(1 +Rj)
2

2σ2
Uj

}+
1

(1−Rj)
exp{−λ

2(1−Rj)
2

2σ2
Uj

}],

and

Q2(j) = [
1√

2π(1 +Rj)
exp{−λ

2(1 +Rj)
2

2σ2
Uj

}+ 1

λ
− (Rj − 1)
√

2π((1−Rj)2 +
σ2
Uj

λ2
)
exp{−λ

2(1−Rj)
2

2σ2
Uj

}],

and

Q3 = 0.5 + Φ(
−2−Rj

σUj
).

And a lower bound for P (E2), denoted as P (E2)low, is

P (E2)low = max

(
0, 1−

√
2

π

q∑
i=1

σVi [
β0
i

|β0
i |

1

(2β0
i − λDi)

exp{−(2β0
i − λDi)

2

8σ2
Vi

}]

)
. (2.9)

Notice that the expressions of the lower bounds above do not involve high dimen-

sional integration. The product of these two lower bounds leads to a lower bound

for PSC(λ), which is PSC(λ)low = P (E1)lowP (E2)low. The evaluation and optimization

of PSC(λ)low are much easier than the evaluation and optimization of the original

probability PSC(λ). When the lower bounds are sufficiently tight, the maximizers of

PSC(λ)low and PSC(λ) with respect to λ are expected to be close to each other. For
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given β0, X and σ2, the maximizer of PSC(λ)low with respect to λ, denoted as λlopt,

is defined as follows.

λlopt = arg max
λ

P (E1)lowP (E2)low (2.10)

Next, we use an example to demonstrate the various probabilities and their lower

bounds obtained above. The example shows that λlopt and λopt can be close to each

other.

Example 1

Consider the linear model Y = Xβ+ε, where β = (a, 0, a, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0)′,

X is the 12 × 16 supersaturated design given in Table 4 of [29], and ε follows

N(0, σ2I16). The true variables in this model are X1, X3, and X9. The values of

P (E1), P (E2), P (E1)low and P (E2)low for any λ > 0 under the model can be calculated

using Theorem 1 and Proposition 1.
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Figure 2.1.: The plots of P (E1), P (E1)low, P (E2), P (E2)low, PSC(λ) and PSC(λ)low

against λ with a = 2
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For a = 2 and σ2 = 1, the plots of P (E1), P (E1)low, P (E2) and P (E2)low against λ

are presented in the left panel of Figure 2.1, and the plots of PSC(λ) and PSC(λ)low

against λ are presented in the right panel of Figure 2.1. From Figure 2.1, the curves

of P (E1) and P (E2) versus λ demonstrate the expected patterns discussed in Section

2.1. As λ increases from 0 to 80, P (E1) increases from 0 to 1 while P (E2) decreases

from 1 to 0. The probability of PSC(λ), which is the product of P (E1) and P (E2),

increases in 0 ≤ λ ≤ 30.287 and then decreases in 30.287 ≤ λ ≤ 80. The maximum

of PSC(λ) is attained at λ = 30.287, that is, λopt = 30.287 and PSC(λopt) = 96.1%.

As expected, the curves of P (E1)low and P (E2)low versus λ are always below the

curves of P (E1) and P (E2) versus λ, respectively. Similarly, the curve of PSC(λ)low

versus λ is below that of PSC(λ) versus λ. In this example, although PSC(λ)low is

not a tight lower bound for PSC(λ), the former captures the overall pattern of the

latter. Furthermore, the maximizer of PSC(λ)low is λlopt = 30.312 and the attained

maximum probability is PSC(λlopt)low = 96.2%, which are close to those of PSC(λ),

respectively.

2.2.2 Monte Carlo Approximation

The lower bounds approach in the previous section is computationally more con-

venient than the original formulas of P (E1) and P (E2) and are reasonably tight when

the number of variables p is small or moderate. When p is large, however, numerical

results show that the lower bounds become less accurate. In this article, we propose

to use the Monte Carlo method to approximate P (E1) and P (E2). We randomly draw

m observations from U and m observations from V . Let m1 be the number of times

that E1 is true, and m2 the number of times that E2 is true. Then, P (E1) and P (E2) are

approximated by m1/m and m2/m, respectively, and further denoted by P (E1)Monte

and P (E2)Monte
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Similar to (12), we can then define the optimal λ based on the Monte Carlo

method, which is denoted as λmopt as follows,

λmopt = arg max
λ

P (E1)MonteP (E2)Monte . (2.11)

In summary, when β0 is known, there are three approaches to calculating or

approximating PSC(λ) and λopt, which are the direct method provided by Theorem 1,

the lower bounds method, and the Monte Carlo method. In practice, however, β0 is

unknown, and it is impossible to directly calculate or approximate λopt. Nevertheless,

the relationship between λopt and β0 can be utilized to approximate λopt in an iterative

manner as will be shown in the next section.

2.3 Self-Voting Procedure for determining λopt

In this section, we propose an iterative procedure to approximate λopt when β0 is

unknown. Our procedure is different from existing methods for selecting λ for lasso in

the literature, such as CV-Lasso, AIC-Lasso and BIC-Lasso. Most existing methods

select λ based on lasso’s performance in prediction, whereas our procedure selects

λ based on lasso’s performance in variable selection, which is lasso’s probability of

selecting all of the true variables.

Our procedure consists of four steps. Firstly, we start with an initial value of λ,

denoted as λ0, and calculate the lasso estimate β̂λ
0
. Let Âλ

0
= {i : β̂λ

0

i 6= 0}. In other

words, Âλ
0

is the collection of variables selected by lasso with λ = λ0. Secondly, we

generate the ordinary least squares (OLS) estimate of β by regressing the response

against the variables in Âλ
0

only, and denote the resulting estimate as β̂Âλ0 . Thirdly,

we treat Âλ
0

as the collection of the true variables and β̂Âλ0 their true coefficients and

use PSC(λ), PSC(λ)low or PSC(λ)Monte to calculate or approximate λopt; we denote the

result as λ∗. Fourthly, we check if λ∗ is equal to λ0. If λ∗ and λ0 are equal, we stop

the procedure and output λ∗ as the final estimate of λopt; otherwise, replace λ0 by λ∗

and go back to the first step.
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We call the procedure proposed above as the Self-Voting (SV) procedure for se-

lecting the tuning parameter λ for lasso. The heuristics underlying the SV procedure

come from the self-voting principle used for tuning parameter selection in smoothing

splines regression [50]. Given λ0, the proposed procedure can be considered a voting

process for λ0 to choose the best tuning parameter, that is, the resulting update λ∗

is the optimal tuning parameter chosen by λ0. The self-voting principle states that

an optimal tuning parameter must vote for or choose itself. This principle can be

validated using an asymptotic argument.

Recall that Y = XAβ
0
A + ε, where A is the collection of true variables. If we start

the SV procedure from λopt (i.e., λ0 = λopt), then lasso has high probability to select

the true model, that is, Â = A with high probability. The OLS estimate of βÂ at

λopt, denoted as β̂ols
Â

, is β̂ols
Â

= β0
A + (X ′AXA)−1XAε. As the sample size n increases,

β̂ols
Â

converges to β0
A at the rate of root n. Therefore, when n is large, β̂ols

Â
and β0

A are

close to each other, which implies that the optimal tuning parameter under β̂ols
Â

(i.e.

λ∗) and the optimal tuning parameter under β0
A (i.e. λopt) should be close to each

other. Asymptotically, λ∗ should converge to λopt, that is, λopt should be self-voting.

Furthermore, when the SV procedure starts with an initial value in a neighborhood

of λopt, the subsequent updates are expected to get closer to λopt. These heuristics

have been confirmed in our intensive simulation study.

Example 2

We use an example to demonstrate the SV procedure. Consider the first case

(a = 2) of the linear model discussed in Example 1, in which the true variables

are x1, x3 and x9. The optimal tuning parameter λopt is equal to 32, which was

obtained with the knowledge of the design, true variables and their coefficients. In

this simulation study, we pretend that the true model is unknown, and generate a

sample of observations from the model.

In the first step, we set λ0 = 50. With λ0 = 50, the lasso estimates are β̂λ
0

1 =

0.0924, β̂λ
0

9 = 0.4644, and β̂λ
0

i = 0 for i 6= 1, 9. Hence, Âλ
0

= {1, 9} as shown in
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Figure 2.2. In the second step, we regress the response against x1 and x9 and obtain

the OLS estimates β̂ols,λ
0

1 = 1.6549 and β̂ols,λ
0

9 = 2.0269. In the third step, we treat

Âλ
0

= {1, 9} as the collection of all true variables and β̂ols,λ
0

1 and β̂ols,λ
0

2 the true

coefficients, and calculate the optimal tuning parameter that maximizes PSC(λ); and

the result is λ∗ = 29.424. In the fourth step, because λ0(= 50) and λ∗(= 29.424) are

different, we update λ0 by setting λ0 = λ∗, return to the first step, and start the next

or second round of iteration.

In the first step of the second round of iteration, λ0 = 29.424, the lasso estimates

are β̂λ
0

1 = 0.754, β̂λ
0

3 = 0.812, β̂λ
0

9 = 1.221, and β̂λ
0

i = 0 for i 6= 1, 3, 9, and hence

Âλ
0

= {1, 3, 9}. In the second step, we regress the response against x1, x3 and x9,

and the resulting OLS estimates are β̂ols,λ
0

1 = 0.82, β̂ols,λ
0

3 = 0.93, and β̂ols,λ
0

9 = 1.52.

In the third step, we treat Âλ
0

= {1, 3, 9} as the collection of all true variables and

the current OLS estimates as the true coefficients, and calculate the optimal tuning

parameter that maximizes PSC(λ), which is λ∗ = 30.287. In the fourth step, because

λ∗ and λ0 are different, we update λ0 by setting λ0 = λ∗ = 30.287, return to the first

step, and start the third round of iteration.

In the first step of the third round of iteration, λ0 = 30.287, the lasso estimates

are β̂λ
0

1 = 0.7263, β̂λ
0

3 = 0.7757, β̂λ
0

9 = 1.1893, and β̂λ
0

i = 0 for i 6= 1, 3, 9, and hence

Âλ
0

= {1, 3, 9}. In the second step, we regress the response against x1, x3 and x9,

and the resulting OLS estimates are β̂ols,λ
0

1 = 0.82, β̂ols,λ
0

3 = 0.93, and β̂ols,λ
0

9 = 1.52.

In the third step, we treat Âλ
0

= {1, 3, 9} as the collection of all true variables and

the current OLS estimates as the true coefficients, and calculate the optimal tuning

parameter that maximizes PSC(λ), which is λ∗ = 30.287. In the fourth step, because

λ∗ and λ0 are the same, we stop the procedure and output λ∗ as the estimate of λopt.

In this example, it takes three rounds of iteration for the SV procedure to stop, and

the final tuning parameter is λ∗ = 30.287, which is self-voting. Although the selected

tuning parameter is different from the optimal tuning parameter λopt = 32.371, which

is calculated under the knowledge of β0, both lead to the selection of the true model.

Note that the last round of iteration could stop after its first step, because in the first
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step, the lasso estimates lead to the same model (i.e. {1, 3, 9}) as the previous round,

the remaining steps must be the same as their counterparts in the previous round,

which implies that λ0 must also be self-voting.

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

λ

β

 

 

β
9

β
1

β
3

β
15

β
11

β
12

β
1

β
9

A={9}
A={1,3, 9}

A={1,9}

Figure 2.2.: The lasso solution path for Example 2

Each iteration round of the SV procedure can be considered a mapping from a

given λ0 to λ∗, which can be denoted as λ∗ = g(λ0). It turns out that the mapping

g can be easily obtained due to the fact that the selected model Âλ only changes

over the ’transition points’ of λ. A value of λ is said to be a transition point if a

variable must be removed from or added to Âλ when λ passes this value. Suppose

the transition points of λ are λ1 < λ2 < ... < λm. For any fixed i ∈ {1, 2, ...,m − 1}

and λ ∈ (λi, λi+1], Â
λ remains the same, the OLS regression of Y against Âλ gives

the same estimate β̂ols,λ
Âλ

, and hence g(λ) also remains the same for λi < λ ≤ λi+1.

Therefore, g(λ) is a step function of λ with jumps only at the transition points. In

order to generate g(λ) for all λ, we only need to select one point from each interval
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of λ. For example, for any fixed i ∈ {1, 2, ...,m− 1}, we can select the middle point

from (λi, λi+1], calculate g(λi+λi+1

2
), and then set g(λ) = g(λi+λi+1

2
) for λi < λ ≤ λi+1.

After g(λ) is calculated, we can plot g(λ) against λ. The self-voting values of λ

are those that satisfy g(λ) = λ. To identify these self-voting values, we can add the

line y = λ and the intersections of the two curves y = g(λ) and y = λ are self-voting.

We refer to the plot that shows those two curves and their intersections as the self-

voting plot, or in short the SV-plot. As a matter of fact, the self-voting procedure

can be performed graphically in this plot. We use the next example to demonstrate

the self-voting procedure using the SV-plot.

Example 3

We calculate g(λ) and generate the SV-plot for Example 2. The transition points

of λ are 3.4, 4.5, 7, 8, 49.3, 53, and 62. The function g(λ) is given as follows: g(λ) = 37

for λ ∈ (53, 62); = 29.4 for λ ∈ (49.3, 53); = 30.3 for λ ∈ (8, 49.3); = 14 for λ ∈ (7, 8);

= 11 for λ ∈ (4.5, 7); and = 9.5 for λ ∈ (3.4, 4.5). The SV-plot is presented in Figure

2.3. Notice that y = g(λ) is a step function represented by solid lines in the plot, and

the function y = λ is represented by the dash line.

The two functions y = g(λ) and y = λ have one intersection in this plot, which

is (30.287, 30.287). The SV-plot also shows the steps of a SV procedure, which starts

from the middle point of the interval (53, 62) (i.e. λ0,1 = 57.5) and eventually con-

verges to the intersection (30.287, 30.287) (i.e. λ∗,3 = 57.5). As shown in Figure 2.3,

λ0,1(= 57.5) is the starting point, the corresponding g(λ0,1) = 37, that is, λ∗,1 is equal

to 37; then update the starting λ by λ∗,1 (i.e. λ0,2 = 37), and find the corresponding

g(λ0,2) = 30.287(λ∗,2 = 30.287) for current λ0,2; keep updating the starting λ by λ∗,2

(i.e. λ0,3 = 30.287) and it will converge to the intersection (30.287, 30.287) finally.

From Figure 2.3, we can find that g(λ) < λ, (forλ > 30.287) and g(λ) > λ, (forλ <

30.287). Then, if λ0 > 30.287, when we apply the self-voting procedure, each step

will result a smaller λ∗ (λ∗ < λ0), which means λ∗ is closer and closer to λopt; if

λ0 < 30.287, the applying of the self-voting procedure will result a larger and larger

λ∗ (λ∗ > λ0), which meas λ∗ is also closer and closer to λopt. This implies that the
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self-voting procedure tends to self-correct by iteration, as discussed before. It satisfy

the self-voting principle and the intensive simulation study made by us also support

it. This is in fact true in general, when there exists an unique intersection of the two

curves y = g(λ) and y = λ, the self-voting procedure starting from any initial point

will converge and it must converge to this intersection.

The scenario discussed in Example 3 has the unique intersection. Sometime, it

can have multiple intersections and none intersection. We discuss these two scenarios

separately in the following two examples. We will demonstrate the two scenarios

using examples and follow each of the example we give the rule of thumb to deal with

the determine of the λopt.

Example 4:

We still use the same linear model in Example 1 with a = 1. In this model, the

true variables are still x1, x3 and x9. One sample generated from the model leads to

the SV-plot with three intersections, as shown in Figure 2.4. The three intersections

are at λ = 12.58, λ = 14.65 and λ = 17.59 respectively, denoted as λin1 , λin2 and λin3

separately. In this case, due to the presence of the three intersections with different

starting values, the self-voting procedure will converge to different values. We can

find that if the initial point λ0 ≤ 12.58, the self-voting procedure will converge to

12.58; if the initial point 12.58 ≤ λ0 < 14.12, the self-voting procedure will converge

to 12.58 also; if the initial point 14.12 < λ0 ≤ 14.65, the self-voting procedure will

converge to 14.65; if the initial point 14.65 ≤ λ0 < 14.90, the self-voting procedure

will converge to 14.65 also; if the initial point 14.90 < λ0 ≤ 17.59, the self-voting

procedure will converge to 17.59; if the initial point 17.59 ≤ λ0, the self-voting proce-

dure will converge to 17.59; As discussed previously, self-voting is necessary condition

for choosing the optimal λ. Therefore to distinguish these three self-voting values,

additional criteria must be used.
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Example 4 shows the SV-plot with 3 intersections. In general, the SV-plot may

have multiple k intersections sometimes. Suppose these intersections are at λin1 , λin2 ,

..., λink , where λin1 < λin2 <, ..., < λink . Then starting from different initial values, the

self-voting procedure will converge to different intersections. When λin1 < λ0 < λink ,

suppose the two adjacent intersections for λ0 are λini and λini+1, (i ∈ [1, k − 1]), then

it can be proved that if g(λ0) > λ0, the self-voting procedure will converge to λini+1;

if g(λ0) < λ0, the self-voting procedure will converge to λini ; if g(λ0) = λ0, the self-

voting procedure will converge to λ0 itself. Similarly, when λ0 > λin1 or λ0 < λink ,

it can be proved that the self-voting procedure will always shrinkage to the nearest

intersection.

Noticed that for each of the intersection, there is a corresponding PSC(λ) in the

self-voting procedure. Intuitively, PSC can be considered as the self-confidence of the

current λ voting for itself. Therefore, we only need to compare the values of PSC(λ)s

and choose the λopt with largest corresponding PSC(λini ), 1 ≤ i ≤ k. That is,

Selection Rule for Multiple Intersections Scenario:

λopt = arg max
λini :1≤i≤k

PSC(λini ). (2.12)

Example 4 continued:

In the Example 4, the self-voting procedure starting from any point could be

shrinkage the three intersections (12.58, 12.58), (14.65, 14.65) and (17.59, 17.59). And

the corresponding PSC(λ) for the three intersections are 13.13%, 17.87% and 42.99%,

separately. According to the above rule, we choose 17.59 as the approximation of the

λopt. The variables selected when λ = 17.59 turns out to be exactly the same with

the true ones.

Example 5:

Still use the same linear model in Example 1 with a = 0.5. The true vari-

ables are still x1, x3 and x9. One sample generated from the model lead to the

SV-plot with no intersections, as shown in Figure 2.5, where, the transition points are
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6.9, 11.8, 12.1, 13.2, 14.6, 14.8, 16, 18.2, 18.8, 19.7. g(λ) = 16.95 when λ ∈ (18.8, 19.7);

g(λ) = 15.4746 when λ ∈ (18.2, 18.8); g(λ) = 13.6242 when λ ∈ (16, 18.2); g(λ) =

12.5099 when λ ∈ (14.8, 16); g(λ) = 11.6012 when λ ∈ (14.6, 14.8); g(λ) = 9.7974

when λ ∈ (13.2, 14.6); g(λ) = 9.0820 when λ ∈ (12.1, 13.2); g(λ) = 7.6443 when

λ ∈ (11.8, 12.1); g(λ) = 6.2069 when λ ∈ (6.9, 11.8);
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Figure 2.5.: y = g(λ) and y = λ No Intersection

As discussed before, the lasso path has been separated as several intervals by the

’changing points’ of λ. Within each interval, there is a corresponding g(λ) calculated

by the SV procedure, defined as λ∗i , (i ∈ (1, s)), where, s is the number of the intervals

along the lasso path. Define the corresponding bound of the λ as λi1 and λi2, (λi1¡λi2).

Let Di = min(|λ∗i − λi1|, |λ∗i − λi2|), which is the smaller one for the two distances

between λ∗i and λi1, and λ∗i and λi2, at the ith interval. Intuitively, the smaller the

Di, the more likely the corresponding model in the lasso path will be selected by the

self-voting. Therefore we suggest to choose the model for none intersections scenario

as follows:
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Selection Rule for None Intersection Scenario:

k = arg max
i:1≤i≤s

Di, (2.13)

where, k is the index of the interval in the lasso path and the corresponding model

is the one selected by the self-voting for none intersection scenarios.

Example 5 Continued:

The corresponding Di is (1.88, 2.73, 2.40, 2.20, 2.9, 3.27, 3.03, 4.12, 0.699) for each

of the interval in the lasso path. According to the selection rule for none intersection

scenario, we suggest to choose the kth (k = 9) as the final selected model, which con-

tains the true variables (x1, x3, x9) but also some redundant variables (x2, x5, x7, x10, x12, x16).

Actually, when the none intersection scenarios happen, usually there doesn’t exist an

interval which contains the exact true variables without non-true ones. For example,

in this example, when λ is within the range of the 3th interval of the lasso path, the

variables in the corresponding model is x1, x9, x10, and another true variable x3 is

added in until λ reduce to the 9th interval of the lasso path. Heuristically, a model

tend to be self-voted when it contains all the true variables. Since in practice, people

would rather to select an oversize model to avoid missing the true variables, therefore,

the above rule can help to find the proper model which contains all the true variables

with the size as smaller as possible.

In the above example, the none intersection scenarios are mostly caused by the

low signal noise ratio, which means there is no enough information to decide the true

model. In general, if Y is sampled from Equation 1 for fixed X and β, all these

three scenarios can be possible. When the signal noise ratio is sharp, the first two

scenarios are more likely to happen, and the model selected by the self-voting with

the rules can guarantee a high probability to select the true models; when the signal

noise is low, the last scenarios are more likely to happen, and the performance of the

self-voting method with the rules will decrease. We use the next example to compare
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the frequency of the three scenarios for the samples from a fixed linear system, and

the performance of the self-voting when the signal noise ratio changing.

Example 6:

We still use the same linear model in Example 1, where the true variables are

still x1, x3 and x9 and a varies from from 0.25 to 4. For each a, we generated 10, 000

samples of Y , and count the frequencies for the three scenarios and the correct se-

lection for each of them by self-voting method with the rules. The results is shown

in Table 2.1, where a represents the signal noise ratio, Single, Multiple and None

represents the three scenarios discussed above, and Total represents the summation

of the three scenarios. a is varying from 4 to 0.25, for the other four columns, each

entry formed by three numbers, which indicate the number of the correct cases se-

lected by self-voting, the number of the corresponding scenarios occurs, and the ratio

of them, separately. For example, when a = 2, for all the 10, 000 samples of Y ,

there are 5166 cases will lead to the single intersection scenario, furthermore, among

these 5166 cases, the self-voting method with the rules can select 4841 cases correctly,

therefore the percentage of correct selection for single intersection scenario is 93.71%;

similarly, the number of the multiple intersections scenario is 4831 and 4594 cases can

be selected correctly, therefore the percentage for the multiple intersections scenario is

95.09%; and there are no none intersection scenario. The total number of the correct

selection cases is 9435, which is the summation of 4841, 4594 and 0, and the overall

percentage of the self-voting method with the rules is 94.35%.

From Table 2.1, as a decreases from 4 to 0.25, the percentage of the correct

selection for the three scenarios are all decreases, which is consistent with the previous

discussion. Meanwhile, the numbers of the cases of the Single and Multiple scenarios

also decrease but the number of the cases of the none intersection increases. When a

is larger than 1.5, there is barely no none intersection scenarios, but when a reduce to

0.25, the number of the none intersection scenarios jumps to 4760, but the percentage

of the correct selection is very low (0.21%).
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a Total Single Multiple None

4.00 9999/10000 (99.99%) 4977/4977 (100%) 5022/5023 (99.99%) 0/0 (0%)

3.00 9981/10000 (99.81%) 4862/4873 (99.77%) 5119/5127 (99.84%) 0/0 (0%)

2.75 9944/10000 (99.44%) 4919/4958 (99.21%) 5025/5042 (99.66%) 0/0 (0%)

2.50 9880/10000 (98.80%) 4804/4860 (98.85%) 5076/5139 (98.77%) 0/0 (0%)

2.25 9730/10000 (97.30%) 4867/5040 (96.57%) 4863/4960 (98.04%) 0/0 (0%)

2.00 9435/10000 (94.35%) 4841/5166 (93.71%) 4594/4831 (95.09%) 0/0 (0%)

1.75 8871/10000 (88.71%) 4716/5299 (89.00%) 4155/4701 (88.39%) 0/0 (0%)

1.50 7917/10000 (79.17%) 4374/5382 (81.27%) 3543/4604 (76.95%) 0/14 (0%)

1.25 6382/10000 (63.82%) 3573/5159 (69.26%) 2809/4811 (58.39%) 0/30 (0%)

1.00 4125/10000 (41.25%) 2411/5007 (48.15%) 1714/4888 (35.07%) 0/105 (0%)

0.75 1699/10000 (16.99%) 1004/4761 (21.09%) 669/4566 (14.65%) 26/673 (3.86%)

0.50 345/10000 (3.45%) 167/4016 (4.16%) 129/3530 (3.65%) 49/2454 (2.00%)

0.25 26/10000 (0.26%) 9/3254 (0.28%) 7/1986 (0.35%) 10/4760 (0.21%)

Table 2.1: Distributions of the Single, Multiple and No intersections cases with a
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2.4 Simulation Studies

In this section, we run some numerical simulations to compare the performance

of the proposed SV method with those of AIC-Lasso, BIC-Lasso, and CV-Lasso in

determining the tuning parameter of lasso for variable selection. The index we use

to quantify the performance of a method is the probability that the method selects

the true model. We refer to this index as the P-index. Notice the calculation of

AIC-Lasso, BIC-Lasso, and CV-Lasso all involve the same term |Y − βX|22, where

Y is the response, X is the design matrix, and β is the regression coefficient vector.

Two different types of estimates of β are used, which are the lasso estimate and the

OLS estimate, respectively.

Because these two different types of estimates can lead to different performances

of AIC-Lasso, BIC-Lasso, and CV-Lasso, both are used in the simulation study and

their corresponding results are reported. In addition, we apply all the four methods

to analyze the well-known diabetes data and compare their results.

Example 7:

In this example, we consider the 12×16 supersaturated design used in Example 1

and the three different specifications of the true variables. Firstly, we designated x1,

x3 and x9 to be the true variables. Under this specified true model, max(|R|) = 0.58.

Secondly, we designated the x1, x6 and x12 to be the true model, and the resulting

max(|R|) = 1. Thirdly, we designated the x5, x8 and x11 to be the true model and

the resulting max(|R|) = 1.0952.

Note that, the three different designations represent three different scenarios of the

irrepresentable condition. In the first one, the irrepresentable condition is satisfied;

in the second one, the irrepresentable condition is on the boundary; in the last one,

the irrepresentable condition is violated.

Under the first specified model, we set β0 equal to (a, 0, a, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0)′

and vary from from 0.1 to 4 with the increment of 0.1. At each level of a, we gen-

erate 10,000 independent samples from the model and each of them contain a vector
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of responses of each design points. For each sample, we apply the SV, CV-Lasso,

AIC-Lasso and BIC-Lasso separately to select the true variables. If a method selects

are exactly x1, x3 and x9, it’s counted as a success or correct selection. The proba-

bility that a method can select the true model is estimated by the proportion of the

successes the method achieves over the 10,000 samples. We use PSV , PCV , PAIC and

PBIC to denote the success proportions of the SV , CV , AIC and BIC, respectively.

The simulation results are presented in Table 2.2.

Notice Table 2.2 includes Pλopt which is calculated from Theorem 1 for the given

β0s. According to Theorem 1, for any fixed λ, there exists a PSV which selects the

true variables. Among them, Pλopt is the optimal. The column of PCV is separated

into two sub-columns, which are β̂OLS and β̂Lasso as discussed in the beginning of

this section. Similarly, the columns of PAIC and PBIC also separated into two sub-

columns. From Table 2.2, we can see that the overall performances of CV is very

poor comparatively. Furthermore, for CV, AIC and BIC, the performances based on

the OLS estimations are always better than the ones based on the lasso estimations.

The performances of SV are comparable with the OLS-based AIC and the OLS-based

BIC when a ≤ 0.9 but becomes dominant when a ≥ 1.

Specifically, as a ≤ 0.5, the performances of all these methods are very poor

(≤ 5%). Among them, the OLS-based AIC is marginally better in general than the

others and SV is comparable with the OLS-based BIC. Under these values of a, all

theses methods do not perform as expected because the signals are very weak; As a

increases from 0.6 to 0.9, the performances of all these methods continue to improve.

Among them, the OLS-based BIC starts to exceed the others from 8.2% at a = 0.6

but only reach up to 31.2% at a = 0.9. The performances of SV are slightly below the

OLS-based AIC when a ≤ 0.8 but exceed the latter at a = 0.9 (PCV = 24.7% and the

OLS-based PAIC = 24%). As a increases from 1.0 to 1.5, PSV increases much faster

than the others and dominate. At a = 1.0, PSV is equal to 0.425, which is larger

than the OLS-based PAIC (0.248) and the OLS-based PBIC (0.342). At a = 1.5, PSV

is equal to 0.794, which almost doubles the OLS-based PBIC (0.428) and triples the
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OLS-based PAIC (0.294). As a increases from 1.6 to 4, PSV keep improving and reach

to 100% accuracy in variable selection. However the OLS-based AIC and OLS-based

BIC stagnate and do not show any significant improvements. The OLS-based PAIC

varies around 30% and up to 32% and OLS-based PBIC varies around 41% and up to

44%. We also plot these simulation results and the similar patterns can be seen in

Figure 2.6, where the solid lines are the results based on the OLS estimates and the

dash lines are the results based on the lasso estimates.

Under this model, the irrepresentable condition is satisfied. According to the

theorem 1, as a increases, which is equivalent to the sample size n increases, there

exists a λ that the probability that selects the true variables will go to 1. As shown in

Table 2.2, PSV can actually achieve that which is consistent with what the asymptotic

results guarantees. But CV, AIC and BIC fail to do that even when a is large.
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Figure 2.6.: Comparison of SV, CV-Lasso, AIC-Lasso, and BIC-Lasso n = 12, p =

16,max(|R|) = 0.58

The same simulation scheme is applied to the second model (x1, x6 and x12 are the

true variables) and third models (x5, x8 and x11 are the true variables). The results
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a Pλopt PSV
PCV PAIC PBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

0.10 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001

0.20 0.012 0.003 0.001 0.000 0.003 0.003 0.002 0.002

0.30 0.024 0.003 0.003 0.002 0.007 0.005 0.006 0.005

0.40 0.035 0.010 0.006 0.005 0.019 0.014 0.017 0.014

0.50 0.046 0.031 0.010 0.009 0.040 0.024 0.037 0.028

0.60 0.059 0.055 0.022 0.022 0.079 0.034 0.082 0.049

0.70 0.168 0.137 0.040 0.024 0.142 0.062 0.156 0.076

0.80 0.225 0.172 0.058 0.033 0.198 0.077 0.214 0.108

0.90 0.355 0.247 0.062 0.031 0.240 0.091 0.312 0.127

1.00 0.451 0.425 0.067 0.043 0.248 0.094 0.342 0.136

1.10 0.528 0.426 0.081 0.035 0.266 0.098 0.378 0.137

1.20 0.605 0.465 0.080 0.032 0.287 0.098 0.403 0.145

1.30 0.683 0.544 0.094 0.021 0.282 0.109 0.404 0.146

1.40 0.779 0.599 0.097 0.020 0.283 0.111 0.406 0.159

1.50 0.837 0.794 0.099 0.032 0.294 0.124 0.428 0.171

1.60 0.868 0.691 0.092 0.012 0.292 0.095 0.412 0.139

1.70 0.895 0.754 0.091 0.013 0.290 0.112 0.426 0.152

1.80 0.926 0.805 0.100 0.010 0.288 0.104 0.408 0.145

1.90 0.950 0.837 0.096 0.008 0.274 0.101 0.401 0.143

2.00 0.961 0.950 0.100 0.024 0.299 0.101 0.426 0.140

2.10 0.968 0.882 0.092 0.012 0.279 0.092 0.409 0.139

2.30 0.975 0.918 0.093 0.011 0.297 0.102 0.427 0.149

2.50 0.980 0.987 0.105 0.030 0.310 0.137 0.436 0.186

2.80 0.992 0.993 0.098 0.014 0.298 0.109 0.427 0.152

3.00 0.999 0.995 0.098 0.028 0.290 0.110 0.420 0.154

3.50 1.000 1.000 0.098 0.015 0.299 0.120 0.421 0.172

4.00 1.000 1.000 0.095 0.015 0.301 0.111 0.438 0.155

Table 2.2: Comparison of SV, CV-Lasso, AIC-Lasso, and BIC-Lasso n = 12, p =

16,max(|R|) = 0.58
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are reported in Table 2.3 and Table 2.4, respectively. Due to the space limitation,

we only include the selected results that a varies from 0.25 to 4. The definitions of

columns are the same as in Table 2.2.

The similar patterns can be found in Table 2.3 and Table 2.4. The overall per-

formances of CV is comparatively poor than the others, and the performances based

on the lasso estimation are always lower than the performances which are based on

OLS-based estimations. In Table 2.3, when a ≤ 1, the OLS-based BIC performs

slightly better than SV and OLS-based AIC, but reach up to 17.7%. When a ≥ 2, SV

starts to performs better than the others and reach up to 50%, while the OLS-based

AIC stagnate around 14% and the OLS-based BIC stagnate around 20%. Notice PSV

can not surpass 50% because the second model is just on the boundary of the irrep-

resentable condition. According to Theorem 1, the upper bound of the PSV will be

50% as a increases, which is consistent with what the asymptotic results dedicates.

Similarly, in Table 2.4, when a ≤ 1, the OLS-based BIC still performs better than

SV and OLS-based AIC, but can only reach up to 12.4%. When a ≥ 2, SV become

superior and reach to 25.6% at a = 4, which is higher than OLS-based PBIC ( 21.2%)

and OLS-based PAIC (16.4%). According to Theorem 1, the upper bound of Pλopt is

equal to 31% as a increases. Due to the violation of the irrepresentable condition, the

probability to select the true model under asymptotic scenarios should be 0. But this

example shows that even the irrepresentable condition is violated, there still exists

certain chances to select the true variables even in the asymptotic scenarios.

Example 8

In this example, we consider three larger supersaturated designs with the dimen-

sions as 12×22, 24×46 and 48×94, separately. The three designs are the ES2 optimal

designs which achieve the ES2 bounds. These designs are given in the supplementary

documents. Comparing to the 12 × 16 design used in the previous example, these

designs are more challenging for applying the SV algorithm because the calculation

of λopt in SV algorithm involves a higher dimensional integration. Thus, instead
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a Pλopt PSV
PCV PAIC PBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

0.25 0.001 0.002 0.000 0.000 0.002 0.001 0.002 0.002

0.50 0.019 0.011 0.006 0.001 0.023 0.002 0.024 0.011

0.75 0.088 0.060 0.020 0.002 0.087 0.011 0.108 0.033

1.00 0.214 0.175 0.034 0.004 0.131 0.023 0.177 0.044

2.00 0.492 0.462 0.042 0.005 0.140 0.035 0.203 0.056

3.00 0.503 0.496 0.040 0.006 0.136 0.041 0.195 0.066

4.00 0.502 0.498 0.049 0.010 0.140 0.051 0.201 0.071

Table 2.3: Comparison of SV, CV-Lasso, AIC-Lasso, and BIC-Lasso n = 12, p =

16,max(|R|) = 1

a Pλopt PSV
PCV PAIC PBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

0.25 0.001 0.001 0.001 0.000 0.002 0.001 0.001 0.001

0.50 0.009 0.005 0.004 0.009 0.014 0.018 0.015 0.021

0.75 0.040 0.021 0.015 0.008 0.048 0.014 0.060 0.018

1.00 0.099 0.061 0.031 0.022 0.088 0.027 0.114 0.037

2.00 0.301 0.250 0.073 0.010 0.140 0.029 0.183 0.040

3.00 0.310 0.253 0.081 0.004 0.149 0.034 0.193 0.044

4.00 0.310 0.256 0.101 0.004 0.164 0.035 0.212 0.044

Table 2.4: Comparison with CV-Lasso, AIC-Lasso, BIC-Lasso, n = 12, p =

16,max(|R|) = 1.0952
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of using the exact integration calculation, we apply the lower bound in Section 2.2

(Equation 2.10) or Monte Carlo method proposed in Section 2.3 (Equation 2.11)

to approximate λopt for different designs. As discussed before, the lower bound ap-

proximation has the highest computing efficiency but the least accuracy comparing

to the exact integration calculation and Monte Carlo approximation. On the other

hand, the Monte-Carlo approximation could offers acceptable accuracy but take more

computational burden.

Similar with the previous example, the responses are generated from the linear

model, Y = Xβ + ε. Here, β is the coefficients of the variables. For the non-true

variables, the value of the corresponding coefficients are all equal to 0; for the true

variables, they are all equal to a. In this examples, we consider four levels of a which

is 0.5, 1, 2 and 3, separately. ε follows N(0, σ2In), where, n is the sample size of the

designs. For each level of a, we generate 10,000 independent samples from the model

and each of them contain a vector of responses of each design points.

For each of the designs, we have to further specified a set of true variables. Here,

for the 12×22 design, we choose x2, x12 and x14) with max(|R|) = 0.5; for the 24×46

design, we choose x1, x11, x31 and x37 with max(|R|) = 0.5; for the 48× 94 design, we

choose x29, x34, x37, x52, x80 and x91 with max(|R|) = 0.6678.

We apply all the four methods to select the true model. As for the SV algorithm,

we apply the lower bound method to approximate λopt for the 12×22 designs and the

Monte Carlo method to approximate λopt for the 24× 46 designs and 48× 94 designs,

respectively. The results are shown in Table 2.5, Table 2.6 and Table 2.7.

For Table 2.5, when a ≤ 0.75, all the performances is very poor (≤ 5%). When

a = 1,The OLS-based BIC performs slightly better than SV and OLS-based AIC, but

can only reach up to 12%. When a ≥ 2, SV become the dominant and reach to 94%

at a = 4, which is significantly higher than OLS-based PBIC ( 38.4%) and OLS-based

PAIC (27.6%); Similarly, for Table 2.6, when a ≤ 0.75, the OLS-based BIC performs

slightly better than SV and OLS-based AIC, but capped at 17.3%. When a ≥ 1, SV

becomes the dominant and achieves to 100% at a = 4, while the OLS-based PBIC
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stagnate around 30% and OLS-based PAIC stagnate around 7%; For Table 2.7, when

a ≤ 0.75, the OLS-based BIC still performs better than SV and OLS-based AIC, but

reach up to 19.7%. When a ≥ 1, SV become the dominant and reach to 100% at

a = 4, while the OLS-based PBIC stagnate around 25% and OLS-based PAIC stagnate

around 1%.

a Pλopt PSV
PCV PAIC PBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

0.50 0.004 0.001 0.001 0.001 0.004 0.001 0.004 0.001

0.75 0.013 0.008 0.004 0.002 0.035 0.004 0.012 0.005

1.00 0.053 0.039 0.017 0.011 0.099 0.011 0.120 0.015

2.00 0.601 0.602 0.057 0.197 0.249 0.012 0.384 0.019

3.00 0.951 0.940 0.048 0.446 0.276 0.011 0.383 0.021

Table 2.5: Comparison of SV, CV-Lasso, AIC-Lasso, and BIC-Lasso, n = 12, p =

22,max(|R|) = 0.6

a Pλopt PSV
PCV PAIC PBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

0.50 0.134 0.070 0.007 0.018 0.020 0.022 0.040 0.058

0.75 0.431 0.008 0.018 0.035 0.052 0.054 0.173 0.141

1.00 0.722 0.594 0.027 0.020 0.064 0.051 0.269 0.149

2.00 0.997 0.954 0.028 0.022 0.078 0.050 0.279 0.178

3.00 1.000 1.000 0.035 0.018 0.073 0.057 0.300 0.174

Table 2.6: Comparison of SV, CV-Lasso, AIC-Lasso, and BIC-Lasso, n = 24, p =

46,max(|R|) = 0.5
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a Pλopt PSV
PCV PAIC PBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

0.50 0.030 0.070 0.000 0.000 0.002 0.000 0.045 0.009

0.75 0.396 0.008 0.001 0.000 0.005 0.001 0.197 0.013

1.00 0.796 0.758 0.001 0.000 0.008 0.000 0.257 0.014

2.00 1.000 0.998 0.001 0.000 0.004 0.000 0.247 0.015

3.00 1.000 1.000 0.001 0.000 0.009 0.000 0.252 0.013

Table 2.7: Comparison of SV, CV-Lasso, AIC-Lasso, and BIC-Lasso, n = 48, p =

94,max(|R|) = 0.6678
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Example 9

In the two previous examples, the designs are fixed. In this example, we con-

sider two linear models with random designs and power decay correlations. The first

model uses the n by 8 design proposed in Zou and Tibshirani (2007). Hence, n is

the prespecified run size varying from 100 to 2000 and the number of predictors is

8. The response vectors y are generated from a linear model: y = Xβ + N(0, 1)

and β = (3, 1.5, 0, 0, 2, 0, 0, 0). The design columns xi, (i = 1, 2, ...8) are multivari-

ate normal vectors with pairwise correlation corr(i, j) = (0.1)|i−j| for any pair of xi

and xj,(i, j = 1, 2, ...8). The performances of the above model selection methods are

given in Table 2.8 after repeat 10,000 times. The results show that performances of

SV are always better than the others and reach 100% since n ≥ 200. The perfor-

mances of OLS-based BIC is comparable with SV but slightly worse than SV; and

the performances of OLS-based AIC can only reach up to 51.7% even n = 2000.

n PSV
PCV PAIC PBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

100 0.874 0.476 0.280 0.530 0.226 0.869 0.323

200 0.996 0.479 0.306 0.527 0.252 0.927 0.360

300 1.000 0.467 0.320 0.515 0.248 0.934 0.387

400 1.000 0.475 0.299 0.534 0.236 0.951 0.385

500 1.000 0.468 0.300 0.513 0.227 0.954 0.375

1000 1.000 0.465 0.303 0.505 0.232 0.964 0.406

2000 1.000 0.473 0.322 0.517 0.242 0.979 0.432

Table 2.8: Comparison of SV, CV, AIC-Lasso and BIC-Lasso: Random Design with

p = 8, n = 100, 200, 300, 400, 500, 1000, 2000 (Zou and Tibshirani, 2007)

The second model use the n × 100 random supersaturated designs, and n is the

prespecified run size varying from 20 to 80, and the number of the factors is 100. The

design matrix Xs are generated each time from N(0,Σ), where Σij = 0.5|i−j| for all
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i, j. The coefficients β∗j follows N(3, 1) for j ∈ {1, ..., 6}, and β∗j = 0 otherwise. The

responses y are generated from the linear model y = Xβ+σε, where ε follows N(0, I)

and σ = 1. Similarly, we can get the probability of correct selection for all the model

selection methods. The results of 10, 000 replications are shown in Table 2.9. The

results shows that when n = 20, the OLS-based BIC performs slightly better than

SV. But when n ≥ 40, SV becomes dominant and the accuracies of selecting the true

model increase with n. When n = 80, PSV is equal to 73.4% while the OLS-based

PBIC is only 28.3% and the OLS-based PAIC is only 0.92%.

n PSV
PCV PAIC PBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

20 0.075 0.026 0.002 0.054 0.004 0.112 0.009

40 0.496 0.012 0.000 0.051 0.007 0.307 0.074

60 0.663 0.005 0.000 0.074 0.014 0.280 0.134

80 0.734 0.002 0.000 0.092 0.019 0.283 0.189

Table 2.9: Comparison of SV, CV, AIC-Lasso and BIC-Lasso: Random Design with

p = 100, n = 20, 40, 60, 80

Example 10: ’Diabetes’ Data

Lastly, we test all these model selection methods on the ’Diabetes’ data with

442 samples (Efron, 2004). There are 10 baseline variables, age, sex, body mass

index, average blood pressure and six blood serum measurements, which are denoted

as ”age, sex, bmi,map, tc, ldl, hdl, tch, ltg, glu” separately. If only considering the 10

main factors, the lasso path show that when λ decreases, the variables are selected

in follows the order ”bmi, ltg,map, hdl, sex, glu, tc, tch, ldl, age”. The optimal model

selected by AIC, BIC and CV is ”bmi, ltg,map, hdl, sex”, which is the same with the

optimal model selected by self-voting method.

When considering the interactions of the main factors, that is, 64 factors in total,

the model selected by SV contains 11 variables. To verify the feasibility of our method,
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we randomly divided the 442 sample size into two parts and use the first part to obtain

the model and the second part to test the fitness measured by MSE. We try different

ratios such as 9 : 1, 7 : 3, 5 : 5 and 3 : 7, separately; and repeat 1,000 times for each

of them to compare the average MSE. Furthermore, we use the original lasso path

calculated from the full samples to calculate the corresponding MSE too. Ai refer to

the model at the ith step along the lasso path. Because Ai is generated from the full

data, thus MSE calculated by this fixed Ai will be the least, denoted as MSEAi . We

can see that, comparing with other model selection methods, SV always has the least

MSE no matter the ratio of the two parts.

The variables selected at the 4th step is ”bmi, ltg,map, hdl”, denoted as A4. Simi-

larly we haveA9 to represent the model selected at the 9th step which is ”bmi, ltg,map, hdl, bmi∗

map, age ∗ sex, glu2, bmi2, age ∗map”, A11 to be ”bmi, ltg,map, hdl, bmi ∗map, age ∗

sex, glu2, bmi2, age ∗ map, age ∗ glu, sex” and A12 to be ”bmi, ltg,map, hdl, bmi ∗

map, age ∗ sex, glu2, bmi2, age ∗map, age ∗ glu, sex, glu”.

Ratio Ai MSEAi MSESV
MSECV MSEAIC MSEBIC

β̂OLS β̂Lasso β̂OLS β̂Lasso β̂OLS β̂Lasso

9 : 1 A12 1.2968 1.3217 1.3335 1.3987 1.4224 1.4176 1.4224 1.4176

7 : 3 A11 3.9767 4.0240 4.0787 4.1786 4.2397 4.2243 4.2397 4.2243

5 : 5 A9 6.9194 6.9781 7.1260 7.2247 7.4311 7.3800 7.4311 7.3800

3 : 7 A4 10.019 10.355 10.849 10.924 11.700 11.582 11.700 11.582

Table 2.10: Average MSE value (× 105) of random testify, repeat 1000 times.
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3. OPTIMAL SUPERSATURATED DESIGN VIA LASSO

3.1 Lasso-based Optimality Criteria

In the previous chapter, we have studied the finite sample properties of Lasso

and have developed an efficient algorithm to select the optimal tuning parameter of

Lasso. Then it is feasible to develop the optimality criteria for constructing SSDs for

screening experiments in the sense of optimizing the probability of correct selection

directly. In this chapter, we will discuss how to generate the SSDs based on the

probability of correct selection. Notice that part of this chapter has been published

in our paper [51].

An obvious choice is to optimize Psc in (4) directly. As discussed in Section 2.1,

Psc depends on X, A, βA, and λ. To explicitly indicate the dependence, we use the

notation Psc(X,A, βA, λ) for Psc in the following discussion.

While we do not know the set A, we can usually assume the upper limit of the

number of true factor based on prior knowledge, the expert opinion, or the user

decision, for example, to focus only on the top 10% of the most important factors. For

convenience, the upper limit of the number of possible true factors is still denoted by q.

Recall that p denotes the total number of factors. The goal of the screening procedure,

therefore, is to find which q of the p factors are true variables. Without imposing

additional prior knowledge, any subset of q factors can be the set that includes all

true factors. Therefore, when constructing the optimal design, all possible subsets of

q factors need to be considered. Let A be the collection of all possible subsets of q

factors, and Cpq =

 p

q

. Define

P̃sc(X,λ) = C−1pq
∑
A∈A

Psc(X,A, βA, λ). (3.1)



47

The probability P̃sc(X,λ) can be interpreted as the average probability for Lasso to

select the true variables with correct signs, and it does not depend on each individual

A. The evaluation of P̃sc(X,λ) still depends on the true coefficients vector βA. One

way to handle this is to define a threshold β0 for the coefficients of the effects of the

true factors, and we assume that we are only interested in identifying factors with

their absolute regression coefficients above β0, that is, |βA| ≥ β0. Then replace βA as

β0A , which is the vector of the thresholds with proper signs for the factors in A for

A ∈ A. For ease of discussion, we assume that the signs of the effect coefficients can

be pre-determined. If that is not the case, then all combinations of both positive and

the negative effect coefficient of all βs need to be considered, and their corresponding

Psc needs to be averaged.

Finally, we define

Psc(X,λ) = C−1pq
∑
A∈A

Psc(X,A, β0A, λ), (3.2)

where β0A is the vector of the thresholds with proper signs for the factors in A for

A ∈ A. Then the optimal design together with the optimal tuning parameter λ,

which are denoted as Xo and λo, respectively, can be defined as follows,

(Xo, λo) = arg max
X,λ

Psc(X,λ). (3.3)

Now the new criterion (Psc) become a function of X (the design matrix), and λ

(the tuning parameter), which is a two dimensional optimization problem. While the

criterion is quite general, there are two major challenges of optimizing Psc directly.

Firstly, based on our numerical evaluation (which we do not report here), given a

design, the optimal λ, the tuning parameter, is highly sensitive to the βA. Therefore,

while we can use the threshold β0 to approximate the βA, the resulting optimal design

and tuning parameter can be very biased. Furthermore, even with the approximation,

the calculation of Psc involve high dimensional integrations, which can quickly become

computationally prohibitive as the dimension p increases, making the optimization

problem not solvable. To address the above two challenges, we want to develop a
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criterion that focuses on X and relatively easy to calculate, and assume that λ can

be properly selected after X is determined and observations have been collected to

estimate βs, here, the optimal λ using the Psc criterion will be determined by the

self-voting algorithm we proposed in chapter 2.3.

Based on the results demonstrated in Section 2.1, we can see that with fixed A,

β, and σ2, P(E1) and P(E2) depend on the means and variances of U and V , which

are R, 4X
′
C(I − P )XCσ

2/λ2, λ
2
D, and (XA

′XA)−1σ2, respectively. And all the four

terms can be furthermore written as the functions of three terms XC
′XA(XA

′XA)−1,

XA
′XA, and XC

′XC . When n goes to infinity, it is easy to show that P(E2) will

converge to 1, therefore,

Psc(n→∞) → P(E1)→ P(|R| < 1) (3.4)

The above result is consistent with the irrepresentable condition of Formula (3)

. In other words, when n is large, the probability of the correct selection can be

approximated as the probability that the irrepresentable condition fulfills. Therefore,

R = XC
′XA(XA

′XA)−1sgn(β) play a pivotal role in both the asymptotic and finite

properties of Lasso. Again, we assume that the signs of the effect coefficients can

be pre-determined. Intuitively, Each row of X ′CXA(X ′AXA)−1 or equivalently each

column of (X ′AXA)−1X ′AXC consists of the estimated regression coefficients gener-

ated from regressing an untrue factor against all true factors. Let Xj be an untrue

factor, regressing Xj on XA produces the vector of regression coefficients focusing on

XC
′XA(XA

′XA)−1 only. Define

γj,A = (X ′AXA)−1X ′AXj, (3.5)

which we refer to as the representation index vector of Xj by the true factors XA.

The representation index vector reflects how well Xj can be represented by the true

factors, which can be considered as the correlation between Xj and the group of true

factors. The larger the absolute values of the γj, the more difficult it is to separate Xj

from XA. The irrepresentable condition of Lasso basically requires that the absolute

sum of the representation indices of all the untrue factors be bounded from above by
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1. The smaller the representation indices, the more efficient is the design matrix X

for Lasso to select the true variables. Therefore, the representation indices can be

used to define the optimality criteria for Lasso. There are various ways to measure

the magnitude of the representation index vector. For example, the L∞, L1, and L2

norms of {γj,A, j ∈ C} can all be considered. Here we only focus on the L2 norm,

which is denoted as RSS(A) and defined as follows,

RSS(A) =
∑
j∈C

‖γj,A‖22 = trace(XC
′XA(XA

′XA)−2XA
′XC). (3.6)

For a given design X, the average of RSS(A) over all possible subsets of q factors is

then defined as

RSSq(X) = C−1pq
∑
A∈A

RSS(A), (3.7)

where Cpq is defined as the same as before. The optimal design Xo is defined as the

minimizer of RSSq(X) over all possible designs. We refer to Xo as the optimal RSSq

design. The subscript q indicates that the optimality criterion is for constructing

optimal SSDs under the assumption that the number of true factors does not exceed

q. Note that in the special case when q = 1, from the definition above, it’s easy to

show that for any given design X, RSS1(X) is proportional to the E(s2) value of

X. In other words, the optimization of the RSS1 is equivalent to the optimization of

E(s2) when we assume there is only one important factor:

Theorem 3.

RSS1(X) =
1

n2
E(s2) (3.8)

The deduction is given in Appendix 1. When q > 1, our proposed criterion is

different from the E(s2) criterion. The numerical evaluation in Section 3.4 will show

that the new criterion can generate superior designs with high P̃sc values compared

to E(s2) criterion. Compared with optimizing P̃sc directly, the calculation of RSSq is

significantly faster, and the new criterion is not dependent on the tuning parameter

and unknown coefficient, which makes the optimization more straightforward.
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It is worth noting that when both the numbers of factors and possible number

of true factors (q) become large, the collection A will be large and the evaluation of

RSSq can become prohibitively slow. There are various approaches to limit the size of

A. One approach is to select a sub-collection of A and the size of the sub-collection

is limited by an upper bound. Furthermore, the sub-collection can be required to

possess certain balance properties such as those of balance incomplete block designs,

for example all factors and pair of factors should be included in equal number of

A’s. Another approach is to rank the involved factors with prior knowledge when

applicable, and score the subset of q factors with their total ranks and then A only

consists of those subsets with scores above a certain threshold. In other words, only

those subsets or models that are most likely will be included in the construction of

optimal designs. These two approaches make the criterion applicable in large-scale

cases.

3.2 Partial Gradient Algorithms for RSS-Optimal SSDs

An important component of this work is to develop efficient algorithms to con-

struct optimal SSDs based on the criteria proposed in Section 3.2. As discussed in

Introduction, there are two major approaches to constructing optimal SSDs, the sys-

tematic construction based method and searching algorithms based methods. We fo-

cus on searching algorithm-based approach. We employ the idea of the column-wise

pair-wise exchange algorithm but using more efficient way to select the candidate

instead of randomly permuting or exchanging. We propose a partial gradient col-

umn exchange algorithm to generate the optimal designs. This approach is inspired

by [52];, where they use the partially projected gradient to efficiently computing non-

parametric maximum likelihood estimates of mixing distributions. The intuition of

our algorithm is to find the partial gradient of the objective function with respect to

each column, and use the gradient information to guide the exchange of the columns.
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Despite the discrete of the designs, the partial gradient of the design will always

provide some information or directions for approaching optimality.

The proposed RSSq criterion is a specific fit for this approach since its partial gra-

dient is trackable. The first step of the partial gradient algorithm is to calculate the

partial derivative of the RSSq. Let Xk be an n× p design matrix where k represents

the kth iteration step. The columns of Xk are denoted as {X1
k, X2

k, . . . , Xp
k}, re-

spectively, and the RSSq value of Xk is denoted as RSSq(X
k). The partial derivative

of RSSq(X
k) with respect to Xb

k (b ∈ (1, 2, ..., p)), denoted as PGk
b , can be explicitly

derived and the formulas are given in the following propositions.

Proposition 2. When q = 1, The partial derivative of RSSq(X
k) with respect to

Xb
k, denoted as PGk

b , is

PGk
b =

∂

∂Xb

RSS1 = 4C−1p1 n
−2XcX

′
cXb, (3.9)

Proposition 3. When q = 2, Let S = Xj
′Xb, C = Xj

′Xi, t = Xb
′Xi, n is the row

number of X. The partial derivative of RSSq(X
k) with respect to Xb

k, denoted as

PGk
b , is

PGk
b =

∂

∂Xb

RSS2 = C−1p2 PA
(2)
1 + PA

(2)
2 + PB(2) (3.10)

where,

PA
(2)
1 = 2

∑
Xb∈A

∑
j∈C

[(1, 0)
(
n t
t n

)−2(S
C

)
]Xj,

PA
(2)
2 = −2

∑
Xb∈A

∑
j∈C

(S,C)[
(
n t
t n

)−1(0 1
1 0

)(
n t
t n

)−2
+
(
n t
t n

)−2(0 1
1 0

)(
n t
t n

)−1
]
(
S
C

)
Xi;

PB(2) = 2
∑
Xb /∈A

XA(X ′AXA)−2X ′AXb.

Proposition 4. When q = 3, Let S = Xj
′Xb, C1 = Xj

′Xi1, C2 = Xj
′Xi2, H1 =

Xi1
′Xi2, t1 = Xb

′Xi1, t2 = Xb
′Xi2, n = Xb

′Xb = Xi1
′Xi1 = Xi2

′Xi2, n is the row

number of X. The partial derivative of RSSq(X
k) with respect to Xb

k, denoted as

PGk
b , is

PGk
b =

∂

∂Xb

RSS3 = C−1p3 PA
(3)
1 + PA

(3)
2 + PA

(3)
3 + PB(3) (3.11)
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Where,

PA
(3)
1 = 2

∑
Xb∈A

∑
j∈C

((1, 0, 0)B−2


S

C1

C2

X ′j);

PA
(3)
2 = −2

∑
Xb∈A

∑
j∈C

((S,C1, C2)B
−1[


0 1 0

1 0 0

0 0 0

B−1+B−1


0 1 0

1 0 0

0 0 0

]B−1


S

C1

C2

X ′i1);

PA
(3)
3 = −2

∑
Xb∈A

∑
j∈C

((S,C1, C2)B
−1[


0 0 1

0 0 0

1 0 0

B−1+B−1


0 0 1

0 0 0

1 0 0

]B−1


S

C1

C2

X ′i1);

PB(3) = 2
∑
Xb /∈A

XA(X ′AXA)−2X ′AXb;

B =


n t1 t2

t1 n H1

t2 H1 n

,

Proposition 5. In general, for any given q, Let S = Xj
′Xb, C1 = Xj

′Xi1, C2 =

Xj
′Xi2, Cq−1 = Xi1

′Xiq−1, t1 = Xb
′Xi1, t2 = Xb

′Xi2, n = Xb
′Xb = Xi1

′Xi1 =

Xi2
′Xi2 = · · · = Xiq−1

′Xiq−1, H1,2 = Xi1
′Xi2, H1,q−1 = Xi1

′Xiq−1, H2,q−1 = Xi2
′Xiq−1.

n is the row number of X. The partial derivative of RSSq(X
k) with respect to Xb

k,

denoted as PGk
b , is

PGk
b =

∂

∂Xb

RSSq = C−1pq PA
(q)
1 +

q∑
h=2

PA
(q)
h + PB(q), (3.12)

where,

PA
(q)
1 = 2

∑
Xb∈A

∑
j∈C

((1, 01, 02, . . . , 0q−1)B
−2



S

C1

C2

. . .

Cq−1


X ′j)
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PA
(q)
h = −2

∑
Xb∈A

∑
j∈C

((S,C1, C2, . . . , Cq−1)B
−1[Mh

q B
−1+B−1Mh

q ]B−1



S

C1

C2

. . .

Cq−1


X ′ih−1

),

PB(q) = 2
∑

Xb /∈AXA(X ′AXA)−2X ′AXb,

B =



n t1 t2 . . . tq−1

t1 n H1,2 . . . H1,q−1

t2 H1,2 n . . . H2,q−1

. . . . . . . . . . . . . . .

tq−1 H1,q−1 H2,q−1 . . . n


,

Mh
q is the q by q matrix in which the element (h, 1) and (1, h) is 1 and all the

others are 0. For example,

M2
q =



0 1 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0


q×q

, M3
q =



0 0 1 . . . 0

0 0 0 . . . 0

1 0 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0


q×q

, and

M q
q =



0 0 0 . . . 1

0 0 0 . . . 0

0 0 0 . . . 0

. . . . . . . . . . . . . . .

1 0 0 . . . 0


q×q

.

Proposition 2-5 demonstrate that the partial derivatives of the RSSq criteria can

be calculated for all qs. The proof of the propositions are given in Appendix 2. With

these formulas, we now propose the partial gradient-based algorithm to construct

RSSq optimal designs.

Partial Gradient Algorithm.
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Since PGk
b has the same dimension as Xb

k, where, b ∈ [1, p], we can define the

partial derivative matrix PGk as {PG1
k, PG2

k, . . . , PGp
k}, where, PG1

k is the par-

tial derivative of RSSq(X
k) with respect to X1

k, PG2
k is the partial derivative of

RSSq(X
k) with respect to X2

k, and so on. The partial gradient algorithm for mini-

mizing RSSq is described as follows.

1. Initialization: Set k=0, and select an initial design X0.

2. Find (i∗, j∗) = arg max
i,j
{sgn(Xij) · PGk

ij} and i0 = arg max
i∈A∗i
{sgn(Xij∗) · PGk

ij∗},

where A∗i = {i : sgn(Xij∗) = −sgn(Xi∗j∗)}.

3. Exchange the signs of Xk
i∗j∗ and Xk

i0j∗ .

4. Iterate Step 2 and Step 3 until |RSSq(X
k)− RSSq(X

k−1))| < δ, where δ is the

prespecified threshold.

The intuition to consider max{sgn(Xij) · PGk
ij} in Step 2 is as follows. When

sgn(Xij) ·PGk
ij > 0, in other words, Xij and PGk

ij have the same sign, then changing

the sign of Xij will decrease RSSq(X
k). The larger the magnitude of PGk

ij is, the

larger the decrease(i.e. the improvement) of RSSq(X
k) will have. This is how we

decide the i∗ and j∗. Note that the SSDs we consider in this dissertation are balanced

with equal numbers of high (+1) and low (−1) levels. Therefore, to change the sign

of Xi∗j∗ , we need to balance the column by changing one opposite sign term in the

same column. The selection of i0 in Step 2 and changing the sign of Xi0j∗ in Step 3

are to maintain the properly balance while avoiding the increase of RSSq(X
k). Here,

we use an example to show how the algorithm works when using RSS3 criterion.

Example 11:

The X0 shown below is a randomly generated initial two level design with n = 8

and p = 12:



55

+ − − + − + + + + + − −

− + + + − − − − + + + +

+ − + + + − − − + − − −

− + − − + + − − − + + −

+ − − − + − + + − − − +

− + + − + + − + − − − +

+ + − − − + + − + + + +

− − + + − − + + − − + −

According to the Proposition 4, the partial gradient matrix of X0 for RSS3 crite-

rion, or PG0, can be calculated as,

68.35 −79.72 −50.92 41.28 −51.86 30.72 68.35 23.68 51.86 41.00 −23.68 −25.70

−47.36 79.81 73.22 57.63 −59.01 −23.89 −47.36 −64.37 59.01 45.09 64.37 5.45

35.20 −74.62 45.98 69.64 45.57 −47.99 −56.90 −31.68 46.53 −46.37 −56.49 −16.08

−43.74 98.04 −32.39 −66.25 39.11 46.29 −43.74 −39.09 −39.11 49.32 39.09 −19.72

58.99 −73.56 −38.37 −64.28 48.28 1.04 58.99 53.27 −48.28 −86.96 −53.27 17.40

−52.39 57.26 30.58 −64.72 67.82 13.92 −52.39 31.79 −67.82 −60.20 −31.79 25.30

37.85 67.40 −74.08 −42.93 −43.38 27.89 37.85 −30.09 43.38 104.49 30.09 29.43

−56.90 −74.62 45.98 69.64 −46.53 −47.99 35.20 56.49 −45.57 −46.37 31.68 −16.08

Then calculates sgnX0. ∗ PG0, where, .∗ is the element-wise product. The result

is shown below,

68.35 79.72 50.92 41.28 51.86 30.72 68.35 23.68 51.86 41.00(+) 23.68 25.70

47.36 79.81 73.22 57.63 59.01 23.89 47.36 64.37 59.01 45.09(+) 64.37 5.45

35.20 74.62 45.98 69.64 45.57 47.99 56.90 31.68 46.53 46.37(−) 56.49 16.08

43.74 98.04 32.39 66.25 39.11 46.29 43.74 39.09 39.11 49.32(+) 39.09 19.72

58.99 73.56 38.37 64.28 48.28 −1.04 58.99 53.27 48.28 86.96(−) 53.27 17.40

52.39 57.26 30.58 64.72 67.82 13.92 52.39 31.79 67.82 60.20(−) 31.79 25.30

37.85 67.40 74.08 42.93 43.38 27.89 37.85 30.09 43.38 104.49(+) 30.09 29.43

56.90 74.62 45.98 69.64 46.53 47.99 35.20 56.49 45.57 46.37(−) 31.68 16.08

The entry with the largest value (104.49) lies in 7th row and 10th column. Then

the least favorable column is selected as 10th column, as highlight in the above table.

Meanwhile, the entry with largest value (86.96) in the same column with the opposite
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sign of X0 lies in 5th row and 10th column. Therefore, X0(7, 10) and X0(5, 10) form

a pair of entries in the same column with opposite signs.

If we exchange the signs of X0(7, 10) and X0(5, 10), as shown in the following

table. The new design, denoted as X1, is still a balanced SSD. (The two exchanged

entries are shown by circled symbols)

+ − − + − + + + + + − −

− + + + − − − − + + + +

+ − + + + − − − + − − −

− + − − + + − − − + + −

+ − − − + − + + − +© − +

− + + − + + − + − − − +

+ + − − − + + − + -© + +

− − + + − − + + − − + −

It is easy to verify that the RSS3 values dropped from 238.47(X0) to 196.62(X1).

Since all the RSSq are minimum criteria, the object function is significantly improved

with this exchange. Replace X0 by X1 and continue the exchange until the RSS3

stagnates, we will obtain the optimal design.

To avoid local stagnation and improve the quality of the final generated designs,

a commonly used strategy is to consider multiple initial designs. Therefore, in our

numerical experiments, we randomly select a group of initial deigns, run the above

algorithm separately, and report the best subset of optimal designs (Section 3.4). The

numerical study shows that the proposed algorithm is much more efficient compared

to other existing columns exchanging algorithms. Here we demonstrate a compar-

ison of the efficiencies of the proposed partial gradient algorithm and the random

columnwise-pairwise algorithm [29] that has been popular in practice. The exper-

iment is conducted on a 64-bit Window 8.1 desktop PC with Intel(R) Core(TM)

i7-3517U CPU (1.90GHz) and 8.00 GB RAM. The results are shown in Table 3.1.

In the above table, we select 100 random-generated 12 × 16 initial designs and

apply both the partial gradient algorithm and Columnwise-Pairwise algorithm. In

average, it takes 20 iterations and 35 seconds for the partial gradient algorithm to
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RSS1 Iterations Time Consumed(second)

Partial Gradient 5.33 20 35

Columnwise-Pairwise 5.33 20,000 7,200

Table 3.1: Partial Gradient Algorithm vs Columnwise-Pairwise Algorithm
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converge to the 95% of the RSS1 lower bound, which is equivalent to the E(s2)

lower bound according to Theorem 3. Meanwhile, when using Columnwise-Pairwise

algorithm, it takes more than 20,000 iterations in average and more than two hours

of computer time to reach to the similar optimal results. This huge difference shows

that the potential of our approach for constructing large- scale designs, which has

barely been touched in literature and is badly needed in practice.

3.3 Numerical Evaluations

We study the RSS-optimal SSDs for three scenarios: (n = 12, p = 16), (n =

24, p = 46) and (n = 48, p = 94). Specifically, we randomly generate 50 designs

as initial designs for each scenario and applied the partial gradient algorithm to

generate the optimal designs. Therefore for each scenario there are 50 optimal designs

generated. For (n = 12, p = 16), we pick the best four designs based on RSS3, denote

them as X1, X2, X3 and X4, and report them in Table 3.2 with the ordered RSS3

values(from the smallest to the largest). In other words, design X1 has the smallest

RSS3 whereas X4 has the fourth smallest RSS3. We also list the RSSq values for

q = 1 and 2. Similarly, for (n = 24, p = 46), we pick the six best generated designs

based on smallest RSS5, denote them as X1, X2, X3, X4, X5 and X6, and report the

RSSq values for q = 1 to 5 in Table 3.3. For (n = 48, p = 94), we pick the six best

generated designs based on smallest RSS7, denote them as X1, X2, X3, X4, X5 and

X6, and report the RSSq values of them for q = 1 to 7 in Table 3.4.

Design X1 X2 X3 X4

RSS1 5.2 5.2 5.2 5.2

RSS2 140.9 141.4 143.7 147.2

RSS3 1927 1950 2016 2035

Table 3.2: RSSq of 12× 16 Designs for q ∈ [1, 3]
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Design X1 X2 X3 X4 X5 X6

RSS1 12.80 12.80 12.80 12.80 12.80 12.80

RSS2 2173 2179 2192 2194 2196 2204

RSS3 99347 99358 101120 101264 101860 102049

RSS4 139613 142964 143629 144193 145204 145826

RSS5 185007 189591 191115 193309 194324 194492

Table 3.3: RSSq of 24× 46 Designs for q ∈ [1, 5]

Design X1 X2 X3 X4 X5 X6

RSS1 24.77 24.77 24.77 24.77 24.77 24.77

RSS2 8942 8944 8949 8952 8959 8964

RSS4 128596 128633 128778 128804 128848 128897

RSS5 164751 164784 165146 165037 165078 165117

RSS6 202443 202665 203160 203058 203044 203120

RSS7 242481 242700 243203 243028 243238 243394

Table 3.4: RSSq of 48× 94 Designs for q ∈ [1, 7]

From Table 3.2-3.4, we can see that the RSS1 values of the picked designs in each

table are the same. Based on Theorem 3, we can deduct the E(s2) value of the designs

from the RSS1 values, and it is straightforward to verify that all E(s2) values reach

the corresponding E(s2) optimal bound according to Theory 3.1 in [33]. Therefore all

these designs are optimal at E(s2) criterion. However, they have different RSSq values

when q > 1, which indicates that the new criterion differentiate designs that are E(s2)

optimal. In other words, given n and p, the RSS-optimal designs are likely different

when the number of the true factors (q) are different. This observation is consistent

with the fact that E(s2) is a special case for RSS criterion. We can also see that the

orders of RSSq are consistent for different q values in all the scenarios we have studied.
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For example, in Table 3.2, RSS2(X
1) ≤ RSS2(X

2) ≤ RSS2(X
3) ≤ RSS2(X

4), which

is consistent with RSS3(X
1) ≤ RSS3(X

2) ≤ RSS3(X
3) ≤ RSS3(X

4). Note that

this consistency is not always true, but does hold most of the time with very rare

exceptions. Majority of time, the order of RSSq1 of the designs implies the order of

RSSq2 when q1 > q2.

We also generate the optimal RSSq(q = 1, 2, 3) designs for various combinations

of n× p from 10× 10 to 50× 100 by using the partial gradient algorithm and studied

their properties. In Table 3.5 and Table 3.6, selected results are demonstrated. The

first two columns represent the run size (n) and the number of the factors (p) of the

optimal designs. The third column is the theoretical E(s2) lower bound [33] of the

specified (n, p) designs. The last three columns list the value of the corresponding

Es2 = RSS1 ∗ n2, RSS2 and RSS3 for generated (n,p) RSS-optimal designs. We can

see that most of the designs’ E(s2) reach the theoretical E(s2) lower bound proposed

by [33], or are very close to the bound. This demonstrates that our algorithm is

effective and the generated designs are valid. To facilitate the application of our

proposed criterion and algorithm, We have built a web tool to generate the RSS-

based optimal designs for any given dimensions. Interested readers can go Http:

//engineering.purdue.edu/Smartdesigns to learn more details.

We further compared the designs in Table 3.2-3.7 by their corresponding Psc values

using simulation. The simulation scheme is described as follows. For the given q,

designX, and constant µ, we first randomly choose a subset A of q columns ofX as the

set of true factors, the regression coefficients of the true variables are randomly drawn

from N(µ, 1) and their signs are randomly assigned; and the regression coefficients

of all the untrue variables are assigned to be zero. Second, we use the linear model

given in (1) to generate the response vector Y . Third, we identify the optimal tuning

parameter λopt by the self-voting algorithm proposed in Section 2.3, and then screen

the true factors using Lasso. Denoting the screening outcomes as Â, if Â = A,

record 1; otherwise record 0. Repeat the above three steps for 10,000 times, and the

proportion of 1’s can be used to estimate Lasso’s variable selection probability Psc.

Http://engineering.purdue.edu/Smartdesigns
Http://engineering.purdue.edu/Smartdesigns
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n p E(s2) Bound Es2 = RSS1 ∗ n2 RSS2 RSS3

10 10 4 4 31.25 122.3922902

10 11 4 4 45.83333333 219.1519274

10 12 4 4 62.5 343.0748299

10 13 4.61538 4.820512821 97.25694444 590.6853632

10 14 5.05494 5.054945055 132.4583333 900.2602873

10 15 5.52381 5.523809524 180.1388889 1324.531944

10 16 5.86666 5.866666667 236.5 1889.020772

10 17 5.88235 5.882352941 290.8333333 2526.570913

10 18 5.882352941 5.882352941 350.25 3278.315789

12 12 2.18181 2.181818182 23.25 125.0714286

12 13 3.6923 3.692307692 48.33333333 273.7653061

12 14 4.21978 4.21978022 74.16666667 482.281746

12 15 4.57142 4.571428571 101.5 727.6984127

12 16 5.2 5.2 140.8611111 1082.653424

12 17 5.64705 5.647058824 185.0833333 1527.048073

12 18 5.96078 5.960784314 235.3333333 2085.708401

12 19 6.45614 6.456140351 301.6944444 2840.703798

12 20 6.82105 6.821052632 374.2916667 3735.771882

12 21 6.85714 6.857142857 442.2916667 4710.585952

12 22 6.85714 6.857142857 512.7 5769.171429

14 14 4 4 46.52083333 270.2886831

14 15 4 4 61.17708333 409.2102881

14 16 4 4.533333333 85.95555556 627.9687967

14 17 4.94117 4.941176471 115.42875 918.7705835

14 18 5.6732 5.673202614 159.1252778 1357.686431

14 19 6.05848 6.058479532 203.1261111 1858.895041

14 20 6.35789 6.357894737 251.7636111 2456.942682

14 21 6.66666 6.742857143 310.8609722 3205.960639

14 22 6.90909 6.909090909 370.2925 4046.424909

14 23 7.41502 7.541501976 461.5766667 5272.847761

Table 3.5: Optimal RSSq Value Table for Different (n, p) Combinations (1)
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n p E(s2) Bound RSS1 RSS2 RSS3

14 24 7.82608 7.826086957 548.3836111 6583.765254

14 25 7.84 8.053333333 641.4093056 8070.064656

14 26 7.84 8.135384615 732.8025 9642.974641

16 16 2.13333 2.133333333 29.25333333 203.2919728

16 17 3.7647 3.764705882 64.84 496.9040363

16 18 4.183 4.183006536 92.45666667 813.6456463

16 19 4.49122 5.14619883 129.985 1168.920641

16 20 5.38947 5.726315789 170.1461111 1624.315073

16 21 6.09523 6.323809524 218.8077778 2205.531807

16 22 6.64935 6.787878788 272.1825 2898.839198

16 23 7.083 7.209486166 332.3780556 3724.531693

16 24 7.42029 7.536231884 397.8761111 4689.602791

16 25 7.68 7.893333333 473.2955556 5838.965735

16 26 7.87692 8.073846154 548.0727778 7080.797771

16 27 8.388 8.478632479 647.2841667 8727.687627

16 28 8.804 8.888888889 757.5872222 10597.30693

16 29 8.828 9.064039409 863.6538889 12592.35619

16 30 8.828 9.048275862 958.5766667 14521.98596

18 18 4.000 4 63.54 503.8183066

18 19 4.000 4.374269006 84.21388889 727.9502754

18 20 4.000 5.010526316 114.3713889 1059.11554

18 21 5.143 5.676190476 152.0304167 1498.719465

18 22 5.801 6.216450216 193.4991667 2020.637987

18 23 6.150 6.782608696 242.7788889 2668.317754

18 24 6.667 7.130434783 292.6106944 3388.02092

18 25 7.200 7.626666667 356.1189909 4324.135102

18 26 7.643 8.036923077 424.3683333 5386.92675

18 27 8.103 8.376068376 497.4444161 6588.223229

18 28 8.487 8.825396825 586.88572 8094.68277

18 29 8.690 9.123152709 676.369915 9693.896475

Table 3.6: Optimal RSSq Value Table for Different (n, p) Combinations (2)
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n p E(s2) Bound RSS1 RSS2 RSS3

18 30 8.855 9.370114943 772.6325567 11511.40758

18 31 9.368 9.711827957 886.2484637 13688.00619

18 32 9.807 10 1005.578866 16058.95067

18 33 9.818 10.24242424 1133.553648 18736.29695

18 34 9.818 10.4456328 1268.143912 21663.53864

20 20 2.105 4.042105263 72.86 656.1069299

20 21 3.810 4.571428571 96.60305556 926.3746545

20 22 4.156 5.471861472 134.8978175 1375.741358

20 23 4.427 6.134387352 174.556712 1881.155322

20 24 5.507 6.666666667 218.224263 2485.127534

20 25 6.400 7.04 262.718441 3143.217781

20 26 6.892 7.581538462 319.8430839 4000.465313

20 27 7.293 8.068376068 383.1860998 5003.898995

20 28 7.831 8.465608466 451.4357086 6154.874274

20 29 8.276 8.78817734 523.0467971 7421.64544

20 30 8.644 9.195402299 608.622483 8974.194109

20 31 9.118 9.565591398 699.2870011 10668.44595

20 32 9.516 9.903225806 799.9945011 12659.59627

20 33 9.697 10.27272727 911.1560658 14884.88569

20 34 9.840 10.52406417 1023.874031 17284.1211

20 35 10.353 10.81008403 1151.299099 20079.18315

20 36 10.794 11.0984127 1288.075 23137.07318

Table 3.7: Optimal RSSq Value Table for Different (n, p) Combinations (3)
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We applied the simulation scheme to all three groups of the designs with q = 3 for

12×16 optimal designs, q = 5 for 24×46 optimal designs and q = 7 for 48×94 optimal

designs separately. And the value of µ is varying from 0 to 5 with an increment of

0.5. The plots of the estimated Psc versus µ for the three group of the designs are

presented in the Figures 3.1-3.3. Since D1 is the best generated design for each of the

three scenarios, we further calculate the theoretical Psc value of D1 at each point of µ

and plot the curves D1PSC in Figure 3.1-3.3. Notice that when β and σ2 are known,

the optimal tuning parameter λ and subsequently the Psc value can be calculated

directly from the equation (4). This curve can serve as an upper bound of the Psc

value since the λ is directly optimized based on the true values of all parameters.

In Figure 3.1, D1, D2, D3, D4 demonstrates the Psc curves of designs X1 through

X4, respectively, with q = 3. Notice that the Psc curve of X1, which is the best

design according to the RSS3 values, is above those of the other designs, over all µ

values, indicating X1 outperformed the other designs. In fact, the order of the RSS3

values is the same as the order of the Psc curves, indicating that the RSSq values have

successfully discriminated the variable selection performances of the designs when

using Lasso was used as the variable selection tool. We can also see that the Psc

curve of X1 is quite close to the D1PSC curve. This implies that the achieved Psc

value is close to the theoretical value. Similarly, Figure 3.2 and Figure 3.3 show the Psc

curves of designs X1 through X6 for n = 24, p = 46(q = 5) and n = 48, p = 94(q = 7),

respectively. And we made similar observations as in Figure 3.1.

In the above Figures, we can see that while all the designs we reported are E(s2)

optimal which reach the E(s2) lower bound, the probability of correct selection of

these designs are different, which can not be reflected by E(s2) criterion but are

consistent with their RSSq values. This simulation study provides evidence that the

our proposed RSS criterion is effective in selecting supersaturated designs with high

Pscs for Lasso. Specifically, designs with lower RSS values also have better Psc values.

The design-only criterion we discussed in Section 3.2 works well as shown in the

numerical study.
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Figure 3.1.: 12× 16 Optimal Designs Performance(q=3)
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Figure 3.2.: 24× 46 Optimal Designs Performance(q=5)
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Figure 3.3.: 48× 94 Optimal Designs Performance(q=7)
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4. CASE STUDY

To illustrate the potential benefits of this screening procedure, we apply it to study an

agent-based model of maritime escort operations. Notice the content in this chapter

has been published in our paper [51]. A brief summary of the context follows. For

further details, see [53]: which is part of a multinational, multi-year effort to leverage

modeling and simulation in order to better understand trade-offs between cost and

operational effectiveness for surface ships, and so improve the ship design process.

4.1 Motivation

In the past two decades, there has been a significant shift in navy missions towards

operations other than war. Counter-piracy, search and rescue, maritime interdiction,

maritime patrol, naval escort operations, and humanitarian efforts are the main focus

of most fleets today, but the vessels that are currently being used in such operations

were mainly built for other purposes. For instance, on 17 August 2009, the North

Atlantic Council approved ”Operation Ocean Shield” to fight piracy in the Gulf of

Aden. Among six surface ships that were assigned in January-June 2012 rotation of

this NATO mission, one was a destroyer and three were frigates (“NATO - Counter-

piracy operations,” n.d.). These are sophisticated warships which are capable of

anti-surface warfare, anti-air warfare, and anti-submarine warfare. Although these

sophisticated multi-mission capable fleets are able to achieve good results in expe-

ditionary warfare against a strong enemy (Murphy 2007), their full capabilities will

probably be used in less than 1% of their total life time. Frigates and destroyers are

also expensive to build and operate.

Smaller combatants are much cheaper and better suited for the more common

modern naval operations due to their flexibility. Therefore, many nations are reshap-
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ing their fleets to meet emerging operational demands, by starting to build multi-

mission capable combatants such as Offshore Patrol Vessels (OPVs) that are smaller

and less sophisticated than frigates and destroyers. These nations are also developing

new tactics and counter measures to better deal with the new threats. The main

purpose of OPVs is maintaining maritime security inshore and offshore, and they can

be deployed globally [54]. Being cheaper yet flexible, OPVs are also great options

for those countries that either do not really need or cannot afford sophisticated naval

combatants [55].

Unfortunately, the ship design and the acquisition process has not kept pace with

the rapid technological advances of the past few decades [56]. Historical cost estima-

tion models, such as those based on cost per ton, often fail to adequately capture new

technology-driven requirements. In the past, operational requirements were often not

considered until late in the ship design process, and then might be based on limited

input by small panels of subject matter experts. Cost effectiveness and operational

effectiveness are both important, and it is extremely hard to achieve both when using

a traditional ship design process. Advances in modeling and simulation, engineering

design software, and massive amounts of data now allow for a much broader and

richer range of ship specifications and capabilities to be explored. Moreover, utilizing

simulation and analytical models to build decision making tools will ensure collabora-

tion between warfighters and engineers in the early stages of the process. Exploiting

technology is paramount for accomplishing the navy objectives and increasing the

effectiveness for both cost and operations [57].

4.2 Simulation Scenario Description

Even though the term ”maritime terrorism” has been in the literature for more

than a few decades, it was not really spelled out clearly until a series of incidents

started in 2000. In January 2000, terrorists tried to attack USS The Sullivans (DDG-

68) in Yemen. They failed because the terrorist boat sank right before the attack.
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Following this event, the terrorists attacked USS Cole (DDG-67) with a suicide boat,

killing 17 of the crew members, in October 2000. Almost two years after these in-

cidents, in October 2002, a boat with explosives hit the French oil tanker Limburg

which was close to Yemen coastal waters [58]. These are just a few examples of how,

with just a small boat, terrorists can cause damage to multi-million/billion dollar

ships, and—more importantly—kill innocent people. Many other terrorist activities

which were discovered in their planning phases and prevented. These incidents show

that maritime terrorism is a serious problem, and that surface combatants must be

ready to fight terrorists at sea.

In June 2002 a group of terrorists, who were planning an attack on two merchant

vessels in the Strait of Gibraltar, were caught by Moroccan officials [59]. The fact

that the officials arrested those terrorists does not mean that similar plans will not

be put into practice by other groups. If a terrorist group fills a boat with explosives

and approach a ship in Strait of Gibraltar, it might be really hard to identify that

boat as a terrorist boat since many vessels are in the strait at any point in time.

Our specific scenario involves a naval escort mission scenario in an anti-surface

warfare environment. It is based on the 2002 Morocco incident, and implemented in an

agent-based simulation modeling platform called MANA, designed by the Operational

Analysis personnel of the New Zealand Defence Technology Agency (DTA) [60]. The

key attributes of MANA which make it a useful tool for military applications are

the situational awareness of the agents, advanced communication capabilities within

squads and with other agents, the interaction of entities with friends and foes, and

the user friendly design of the program. There are four main sets of parameters that

form agent behaviors in MANA [61]:

• Personality weightings determine the willingness of agents to perform a partic-

ular action;

• Movement constraints modify the basic personality weightings of the agents;
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• Intrinsic capabilities determine the physical characteristics of the agents such

as sensors, weapons, or fuel level; and

• Movement characteristic adjustments ensure that agent actions change in dif-

ferent terrain conditions and different situations.

Just recently, DTA released MANA-V. The “V” stands for both vector and five. In

this version, the programmers replaced the cell-based movement of previous versions

with vector based movement. This allows building larger battlefield regions with

panning and zooming options, and allows defining users to define distances, and

the attributes such as speed and range, in real-world units rather than pixel-based

units [62].

There are six types of agents in the scenario: the high value unit (HVU) being

escorted, the OPV, the OPV’s helicopter, terrorist boats, known vessels, and unknown

vessels. A screenshot from MANA appears in Figure 4.1; note that the sizes of the

agents are not to scale, but are magnified for easier visualization by the user. The

allegiance of the HVU, OPV, and the helicopter is “friend,” the allegiance of the

terrorist boats is “hostile,” and the allegiance of the known and unknown vessels is

“neutral.” The OPV’s mission is to escort the HVU through the Strait of Gibraltar

and protect the HVU from attacks that can occur in the passage. The OPV has

several guns, ranging from high caliber guns to machine guns. It also has a helicopter

landing platform. The main role of the helicopter is to detect and classify unknown

vessels. Its high speed and maneuverability give the friendly forces an advantage

against the hostiles. The helicopter can also be equipped with a machine gun so that,

if necessary, it can start firing before the hostile vessels come too close to the HVU.

The terrorist boats are loaded with explosives, and their purpose is to get close

enough to the HVU to perform a suicide attack. The only target of the hostile boats

is the HVU. They do not attack the OPV, but in some cases they may try to evade it.

One of the critical properties of the terrorist boats is that they are initially acquired

as unknown vessels in the friendly force radar systems until they are classified as
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Figure 4.1.: MANA screenshot, showing six types of agents in the Strait of Gibraltar

(from Kaymal 2013)

enemy. Therefore, either the helicopter classifies them as enemy, or they get closer to

the OPV or HVU, and the friendly ships classify them depending on the range.

The known ships and the unknown ships are both neutral and they do not pose a

threat to friendly assets. The only difference between the two is that while the OPV

can instantly classify the known neutral ships using an Automatic Identification Sys-

tem (AIS) device, unknown ships cannot be classified when they are initially detected.

This occurs for several reasons: some ships may be too small to carry an AIS device,

others may have a device that is not working or turned off. This represents the type

of marine traffic often found in the Strait of Gibraltar and other similar situations. It

complicates matters for the OPV, since the OPV and its helicopter may be unable to

fire on hostile boats if neutral ships are close by. Moreover, the OPV and helicopter

may need to spend a substantial amount of time and effort identifying unknown ships,

even though the vast majority are neutral. These distractions might give terrorists a

better chance to approach the HVU without being classified as threats.
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The simulation begins with the HVU and OPV approaching the strait. It halts

the instant that either the HVU successfully navigates the strait, or it is attacked by

a hostile ship.

4.3 Simulation Experiments

We conducted multiple sets of experiments in the process of creating and exploring

this simulation model. Those for exploring the trade-offs used nearly orthogonal and

balanced mixed designs [63], which are space-filling designs capable of handling a

mix of continuous, discrete, and qualitative factors. The initial experiment involved

100 replications of a NOAB design for 38 factors, including one that represented the

time step used in the scenario. This directly affects the time it takes to complete the

simulation runs, but the time step must be small to avoid model artifacts (Al Rouawaii

and Buss ref). Once the choice of time step was settled and some other minor changes

were made, the final space-filling experiment involved 200 replications of a NOAB

for 35 factors. Consolidating these results into a single file for analysis resulted in

153,600 simulation runs. Kaymal [53] uses a range of statistical techniques, including

regression, logistic regression, and partition trees, to model the relationship between

the factors and key responses. These models also are used to suggest factor ranges

and combinations that make efficient use of resources but achieve high operational

effectiveness.

In this paper, we focus on just one of the many potential output measures. Our

response Y is the proportion of time that the HVU successfully navigates the strait.

We use a 24 × 69 Lasso-optimal design capable of examining up to 69 factors, and

identifying up to 24 important ones. The design is available on request. We aug-

mented Kaymal’s list of 35 factors with an additional 30 that had not initially been

explored. To maintain the spirit of a screening experiment, we made very tiny changes

in factor settings for personality weights and communication characteristics (e.g., ±2

on a scale of −100 to 100). In addition to serving as an example for the Lasso screen-
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Table 4.1: Numerical Evaluation of 24× 69 Lasso-optimal design

q Important Factors SVOE Lasso Variable Selection

5 4,5,32,50,56 (56,50,4,32,5)

10 3,4,6,17,23,25,26,31,37,63 (37,4,31),(37,4,31,3),(37,4,31,3,59,25,17,6)

15 5,8,9,20,25,26,29,33,37, (3,37,39,46,33,5,52,24,48,58,26)

44,45,46,47,60,63

20 2,8,9,12,21,26,32,34,39,40, (39,38,52,26,58)

46,47,52,53,55,57,58,62,64,65

ing approach, we viewed this as an opportunity to beta-test some aspects of MANA

that were not used in Kaymal’s experiments. (Over the years, the developers have

added many features to MANA in response to requests by NPS students. In turn,

the beta-testing by NPS students of MANA’s features has been useful for verification

and validation efforts.)

To test the performance of the selected design, we ran a quick numerical evaluation

of the selected design. Consider a linear model with 65 factors and q = 5, 10, 15, and

20 respectively. The important factors are randomly selected and their effects are set

at 3. The other factors all have an effect of 0. The white noise follows a standard

normal distribution. We generate one set of responses of the 24 × 69 Lasso-optimal

design for each case, and the results are summarized in Table 4.1. All factors that

are both truly important and selected by Lasso are shown in boldface. Note that for

the q = 10 case, there are multiple optimal λs, therefore multiple models.

Ideally, the SVOE Lasso method would select all of the important factors and

none of the unimportant ones. It does this for our q = 5 example. As q increases, the

number of selected factors remains roughly constant, which means there is a decrease

in the proportion of correctly identified factors. Some unimportant factors also show

up, although false positives are less of a concern in screening experiments because they
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can be eliminated in subsequent stages. Clearly, a much more extensive empirical

investigation would be needed to provide a true picture of the design’s screening

capabilities, both in terms of false positives and false negatives. Nonetheless, it is

promising to see that when the number of important factors is small or moderate (q =

5 or 10), the SVOE Lasso method selects a majority or all of the important factors

with less than half number of runs required by saturated design. This implies that

for practical screening problems where a small set of factors can drive the response,

SVOE Lasso may work well.

With these promising (though limited) results giving us some confidence of the

design, we ran 1000 replications to obtain sample proportions Yi for each of the 24

design points. This took over 5.25 days of CPU time on our computing cluster. We

found that seven of the 24 design points aborted before all replications were complete.

After defining a new response Ỹ ≡ I(all reps complete), we quickly identified which

factor was causing the problem. After confirming our findings by running MANA in its

GUI mode, we removed this factor from our list and substituted another. This points

out a clear benefit of using a screening procedure. We were able to identify a bug in

just 5.25 CPU days, rather than the 112 CPU days required for 1000 replications of

our 512 design point NOAB, or the 4.9 CPU years required for 1000 replications of

an 8196 design point resolution V fractional factorial [64].

Our second screening experiment ran to completion. There were two potential

choices for λopt. The smallest selects two of the first 35 factors and three of the

second 30, the largest selects six of the first 35 factors and five of the second 30. The

Lasso path for 40 ≤ λ ≤ 220 appears in Figure 4.2.

These results were somewhat surprising, since we had anticipated that all the

important factors would be among the first 35. Further experimentation is under-

way to determine an appropriate baseline for the study. Whatever these results,

they will be beneficial for several stakeholders. As mentioned earlier, the MANA

developers have been adding features to expand its capabilities, and they are always

interested in results of large-scale beta tests that might indicate either model bugs
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Figure 4.2.: Lasso Path for the 24 65 design

(“artifacts”), or else modeling concepts that would benefit from additional clarifica-

tion in the documentation. Those creating scenarios can use screening experiments

early in the model-building process to aid in model verification and help set suitable

factor ranges. The international consortium looking at the model-based ship design

project will benefit from having information about the robustness of the findings—

we advocate that it is better to experiment on a large number of factors and seek a

simplified model than to limit the factors from the outset [65]. Finally, by examin-

ing simulation models that are being used for decision-making, we will continue to

identify challenges that would benefit from further methodological research.
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5. WEBSITE OF THE SMART OPTIMAL DESIGN FOR

SIMULATION

To facilitate the application of our methods and make it more convenient for aca-

demic and industry applications, we created ”The Smart Design for Simulation”

website (”https://engineering.purdue.edu/smartdesigns”) on the cluster of Industrial

Engineering department of Purdue University. The website provide an interface for

people to generate optimal SSDs using the criteria and algorithm discussed in pre-

vious chapters. Given any combination of the run size n and the number of factors

p, the Matlab package running on the cluster usually generates the designs within

several seconds or minutes, depends on the given n and p.

The main page (Figure 5.1) describes the purpose of the website. By click the

tap ”Two Level Design” and ”Multiple Level Design” on the left top of the main

page, users can select the levels of the designs they want to generate (Figure 5.2).

As mentioned previous, we also extended our methods into the multiple level designs

as well. User can just type in the dimensions (n and p) and select the criterion

they prefer and then click the button ”Generate” (Figure 5.3). The Matlab package

running on the cluster will provide the optimal SSDs for given n and p (Figure 5.4).

After the generated optimal designs have been applied, users can also use this

website to analyze the results. As shown in Figure 5.6, users can upload the design

matrix and responses from an excel or text file, then select the model selection method

they prefer. Besides the AIC-Lasso, BIC-Lasso and CV-Lasso, We also provide the

SV-Lasso (Chapter 2.3) as an option to do the model selection. We expect the SV-

Lasso can help people to achieve better model selection results comparing to the

traditional methods.
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We also provide an example on the website (click the tab ”Example” as shown in

Figure 5.7 and Figure 5.8) to show how the website works and a link to download our

packages and data generated.
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Figure 5.1.: Main Page
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Figure 5.2.: Two Level Designs
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Figure 5.3.: Two Level Designs Input
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Figure 5.4.: Two Level Designs Output
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Figure 5.5.: Multiple Level Designs
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Figure 5.6.: Screening



85

Figure 5.7.: Example
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Figure 5.8.: Multipmedia
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6. CONCLUDING REMARKS AND FUTURE WORK

We have developed a general framework with effective statistical methods for design

and analysis of screening experiments to bridge the aforementioned gap. We first

studied the variable selection performances of the lasso under finite samples and

establish the exact relationship between their performances and design matrices. We

also discussed the approximations of the lower bounds of the probabilities for the

lasso selecting the true model or variables, and developed Monte Carlo procedures

for them. Using the probabilities, we developed a data driven iterative procedure to

select λ. Simulations show it outperform other existing methods.

Based on that study, we have proposed optimality criteria for constructing super-

saturated designs that guarantee optimal variable selection performance, and studied

the theoretical properties of the proposed criteria. Furthermore, we develop an effi-

cient partial gradient algorithm and apply it to construct optimal RSSq SSDs. The

numerical results demonstrate the great potential of our methods.

Our research will encourage the practice of design of experiments in study of

complex systems. Specifically, the design will be used in large-scale simulation models.

The resulting efficiency improvement of simulation experiments will impact research

and applications of various science and engineering areas and facilitate the decision-

making process.

For the future research, it is possible to extent our work in three directions. First,

the iterative procedure of the tuning parameter selection demonstrates excellent per-

formance empirically, that is, it selects λ close to the optimal lambda, but we have

not established the result theoretically. We expect that the procedure produces a

good estimate of the optimal lambda. Second, we are applying the finite samples

analysis on other variants or improvements of the lasso that use more sophisticated
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penalty function such as the LLA [66]. Thirdly, the idea that generating designs

based on optimizing the variable selection performance can be extended to other

L1-based shrinkage methods beyond Lasso to generate new and practically more at-

tractive criteria, and the partial gradient algorithm shows significant improvement of

the efficiency and can be used on other criteria.
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APPENDIX A

DESIGNS USED IN THE EXAMPLES

Design: Optimal 12× 16 SSD based on E(s2)

− − + + + + − − − + + − + + − +
− + − + + + − + + − − + − + + +
+ − + − + − − + + − − − + − + +
− + + + + − + + − + − + + − − −
− + + − − + − − + + + + + − + −
+ + − + − − + − + − + + + − − +
+ − + + − − − + − − + + − + + −
+ − + − − + + − + + − + − + − +
− + − − − − + + − + + − − + + +
+ − − + + + + + + + + − − − − −
+ + − − + + + − − − − − + + + −
− − − − − − − − − − − − − − − −

Design: Optimal 12× 22 SSD based on E(s2)

+ + + + + + + + + + + + − − − − − − − − − −
− − + − + + + − − − + + + − + − − − + + + −
+ + − − − + − − + − + + + + − + − − − + + +
− − − + − − + − + + + + − + + − + − − − + +
− + − + + + − − − + − + + − + + − + − − − +
+ − − + − + + + − − − + + + − + + − + − − −
+ − − − + − − + − + + + + + + − + + − + − −
− + + + − − − + − − + + − + + + − + + − + −
− − + − − + − + + + − + − − + + + − + + − +
− + − − + − + + + − − + − − − + + + − + + −
+ + + − − − + − − + − + + − − − + + + − + +
+ − + + + − − − + − − + − + − − − + + + − +
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APPENDIX B
PROOFS

Proof of Theorem 1
Because the lasso target function is convex, the lasso estimate by (2) must satisfy

the KKT conditions as follows (Rosset and Zhu,2007):

(X’X- X’Y)j = −λ
2
sgn(β̂j) for β̂j 6= 0; (B.1)

− λ

2
≤ (X ′Xβ̂ −X ′Y )j ≤

λ

2
for β̂j = 0; (B.2)

Note that for the correct selection condition, Â = A ⇐⇒ β̂Ĉ = βC = 0, put the
latter into the KKT conditions, we can get:

X ′AXAβ̂A −X ′AY = −λ
2
sgn(β̂A) (B.3)

− λ

2
≤ X ′CXAβ̂A −X ′CY ≤

λ

2
(B.4)

where, XA is the set of columns belong to A, XC is the set of columns belong to
C. By linear model, we have Y = XAβA + ε, replace Y in the above formulations,
they become:

β̂A − βA = (X ′AXA)−1X ′Aε−
λ

2
(X ′AXA)−1sgn(βA) (B.5)

− λ

2
≤ X ′CXA(β̂A − βA)−X ′Cε ≤

λ

2
(B.6)

Replace (β̂A − βA) in (8) by the right side of (7), we have

− λ
2

(1+X ′CXA(X ′AXA)−1sgn(β̂A)) ≤ X ′C(I−P )ε ≤ λ

2
(1−X ′CXA(X ′AXA)−1sgn(β̂A))

(B.7)
where P = XA(X ′AXA)−1X ′A, this is the sufficient condition for correct selecting

variables, but the sgn(β̂A) may be not correct with the original ones. To ensure the
sign correctness, we have to add the sign condition into the formulations above. The
correct sign condition sgn(β̂A) = sgn(βA) is equal with the following inequations:

β̂A. ∗ βA > 0; (B.8)
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where, ”.∗” means the production of corresponding elements in the vectors, which
is still a vector. For example, β̂Â. ∗ βA = diag(β̂Â)diag(βA)1̃, here 1̃ = (1, 1, ...1)′q,
q =| A | is the size of A.

Obviously, implementing any of them will all achieve the sufficient and necessary
condition for sign correctness. Here, we use (10) for mathematical convenience.

”. ∗ βA” at the both sides of (7), we have

β̂A. ∗ βA = βA. ∗ βA + (X ′AXA)−1X ′Aε. ∗ βA −
λ

2
(X ′AXA)−1sgn(β̂A). ∗ βA (B.9)

Define τ = (X ′AXA)−1X ′Aε and T = (X ′AXA)−1sgn(βA), then it becomes,

β̂A. ∗ βA = βA. ∗ βA + τ. ∗ βA −
λ

2
T. ∗ βA (B.10)

Implementing (10) and rewrite the right side of (13) as the element-wise form,

β2
iA + τiAβiA −

λ

2
TiA. ∗ βiA > 0 (B.11)

where the index iA refers to ith element of the corresponding vector which belongs
to A. There are two roots across the X-axis, 0 and λ

2
TiA − τiA. According to the

properties of concave function, the inequation satisfied when the following stands,

βiA ∈ [(−∞,min(0,
λ

2
TiA − τiA)) ∪ (max(0,

λ

2
TiA − τiA),∞)] (B.12)

Clearly, (14) could guarantee βiA has the correct sign, the conjunction of all the
entries of β which satisfy (14) makes the sufficient and necessary sign correctness
condition of the lasso:

⋂
i

[βiA ∈ [(−∞,min(0,
λ

2
TiA − τiA)) ∪ (max(0,

λ

2
TiA − τiA),∞)]] (B.13)

Note that ε follows N(0, σ2In), the equality holds when ε is normal. The constrains
turn out to be some probabilistic events determined by a set of normal distribution.
Define R = X ′CXA(X ′AXA)−1sgn(βA), the two events can be written as

E1 = {−λ
2

(1 +R) ≤ X ′C(I − P )ε ≤ λ

2
(1−R)} (B.14)

E2 = {
⋂
i

[βiA ∈ [(−∞,min(0,
λ

2
TiA − τiA)) ∪ (max(0,

λ

2
TiA − τiA),∞)]]} (B.15)

Thus, the Probabilistic the lasso sign correctness is:

P (SC) = P (E1 ∩ E2)(= P (E1)P (E2)) (B.16)
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The second equality holds when ε is normal. Recall the definition of P , R, and D,
let U = R+ 2

λ
X ′C(I−P )ε and V = D−(X ′AXA)−1X ′Aε, then U follows the multivariate

normal distribution N(R, σ
2

λ2
X
′
C(I − P )XC), and V follows the multivariate normal

distribution N(D, σ2(X ′AXA)−1). Then
E1 is the event of,

{−1 ≤ U ≤ 1} , (B.17)

E2 is complement of,{
q⋃
i=1

[(min(0, Vi) ≤ β0
i ≤ max(0, Vi))]

}
, (B.18)

Proof of Theorem 2
Similarly with Theorem 1, for any sgn(β̂A), we have

− λ
2

(1+X ′CXA(X ′AXA)−1sgn(β̂A)) ≤ X ′C(I−P )ε ≤ λ

2
(1−X ′CXA(X ′AXA)−1sgn(β̂A))

(B.19)

Thus, E (k)1 is the event of, {
−1 ≤ U (k) ≤ 1

}
, (B.20)

And also, when sgn(β̂
(k)
A ) = sgn(βA), it is equivalent to the following inequations:

β̂
(k)
A . ∗ βA > 0; (B.21)

Similarly, when sgn(β̂
(k)
A ) = −sgn(βA), it is equivalent to the following inequa-

tions:
β̂
(k)
A . ∗ βA < 0; (B.22)

From the similar procedure in Theorem 1. Let E (k)Vi
is the event (min(0, ViA) ≤

β̂
(k)
iA ≤ max(0, ViA)) and E (k)CVi

is the complement of the E (k)Vi
, thus

E (k)2 = {(
⋂

i:δ
(k)
i =−δ(0)i

E (k)Vi
)
⋂

(
⋂

i:δ
(k)
i =δ

(0)
i

E (k)CVi
)} (B.23)

Thus, the Probability of the lasso achieves ordinary correctness is,

P (OC) =
2q∑
k=1

P (E (k)1 )P (E (k)2 ) (B.24)

Proof of Proposition 1

P (E1) = P (−1 ≤ N1 ≤ 1) (B.25)
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N1 = N(R, 4
λ2
X
′
C(I − P )XCσ

2); Let Rj = X
′
CjXA(X ′AXA)−1sgn(βA) implies the

jth entry in the mean vector of the normal distribution, and σ2
1jj = 4

λ2
X
′
Cj(I−P )XCσ

2

implies the (j, j) element in the covariance matrix.

P (E1) = P (A1 ∩ A2 · · · ∩ Aq) (B.26)

= 1− P (Ac1 ∪ Ac2 · · · ∪ Acq) (B.27)

≥ 1− P (Ac1)− P (Ac2) · · · − P (Acq) (B.28)

≥ 1−
l∑

j=1

P ((N(Rj, σ
2
1jj) ≤ −1) ∪ (N(Rj, σ

2
1jj) ≥ 1)) (B.29)

Where, l = p−q. According to the upper and lower bounds for normal distribution
function,

(1) when (1−Rj > 0), the upper bound for P (N(Rj, σ
2
1jj) ≥ 1):

P (N(Rj, σ
2
1jj) ≥ 1) =

σ1jj√
2π(1−Rj)

e

−(1−Rj)
2

2σ2
1jj (B.30)

It’s easy to know the value of the above equation will be within [0, 0.5];
(2) when (1−Rj < 0), the upper bound for P (N(Rj, σ

2
1jj) ≥ 1):

P (N(Rj, σ
2
1jj) ≥ 1) = 1− σ1jj(Rj − 1)√

2π((1−Rj)2 + σ2
1jj)

e

−(1−Rj)
2

2σ2
1jj (B.31)

Similarly, the value of the above equation will be within [0.5, 1];
(3) when (−1−Rj < 0), the upper bound for P (N(Rj, σ

2
1jj) ≤ −1) is:

P (N(Rj, σ
2
1jj) ≤ −1) =

σ1jj√
2π(1 +Rj)

e

−(1+Rj)
2

2σ2
1jj (B.32)

(4) when (−1−Rj > 0), the upper bound for P (N(Rj, σ
2
1jj) ≤ −1) is:

P (N(Rj, σ
2
1jj) ≥ 1) = 1 +

σ1jj(Rj + 1)√
2π((1 +Rj)2 + σ2

1jj)
e

−(1+Rj)
2

2σ2
1jj (B.33)

(5) when (|Rj| = 1),

P ((N(Rj, σ
2
1jj) ≤ −1) ∪ (N(Rj, σ

2
1jj) ≥ 1)) = 0.5 + Φ(

−2−Rj

σ1jj
) : (B.34)

Thus, when |Rj| < 1, lower bound for P (E1) is

P (E1)low = 1− σ1jj√
2π

l∑
j=1

[
1

(1 +Rj)
e

−(1+Rj)
2

2σ2
1jj +

1

(1−Rj)
e

−(1−Rj)
2

2σ2
1jj ] (B.35)
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Similarly, when Rj > 1, lower bound for P (E1) is

P (E1) ≥ 1−
l∑

j=1

P ((N(Rj, σ
2
1jj) ≤ −1) ∪ (N(Rj, σ

2
1jj) ≥ 1)) (B.36)

≥ 1−
l∑

j=1

[
σ1jj√

2π(1 +Rj)
e

−(1+Rj)
2

2σ2
1jj + 1− σ1jj(Rj − 1)√

2π((1−Rj)2 + σ2
1jj)

e

−(1−Rj)
2

2σ2
1jj ]

(B.37)

(B.38)

Cause the sgn(βA) is unknown, thus we use the R̃j to eliminate the sign, clearly,
|R̃j| > |Rj|, for (50), the sign of Rj does not affect the value, thus replace Rj with |Rj|.

Let f(|Rj|) = 1
(1+|Rj |)e

−(1+|Rj |)
2

2σ2
1jj , f(−|Rj|) = 1

(1−|Rj |)e

−(1−|Rj |)
2

2σ2
1jj . g(|Rj|) = f(|Rj|) +

f(−|Rj|), it can be easily proved that g
′
(|Rj|) > 0, when |Rj| < 1. Thus, for (50),

directly replace Rj with |R̃j| can achieve the lower bound.
We can also prove (51) is also achieve the lower bound when replace Rj with |R̃j|.

Thus, we can eliminate the sign of β in P (E1)low. Besides, the lower bound of (50) is
the case that satisfied the irrepresentable condition, and lower bound of (51) is not.
We can also get the upper bound for both of them.

For P (E2), we have

P (E2) = P (
⋂
i

[βiA ∈ [(min(−∞,N2)) ∪ (max(N2,∞)]]) (B.39)

≥ 1−
q∑
i=1

P (min(0,N2i) ≤ βiA ≤ max(0,N2i)) (B.40)

Where N2i = N(µ2i, σ2ii), let µ2i represent the ith entry of the λ
2
(X ′AXA)−1sgn(βA);

let σ2
2ii represent the (i, i) element of the (X ′AXA)−1δ2).

Let βiA implies the ith entry in βA
(1) when βiA > 0 and µ2i < βiA or βiA > 0 and µ2i > βiA

P (min(0,N2i) ≤ βiA ≤ max(0,N2i)) = P (N2i ≥ βiA) (B.41)

≤ σ2ii√
2π(βiA − µ2i)

e
−(βiA−µ2i)

2

2σ2
2ii (B.42)

(2) when βiA < 0 and µ2i > βiA or βiA < 0 and µ2i < βiA:
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P (min(0,N2i) ≤ βiA ≤ max(0,N2i)) = P (N2i ≤ βiA) (B.43)

≤ −σ2ii√
2π(βiA − µ2i)

e
−(βiA−µ2i)

2

2σ2
2ii (B.44)

Thus, when |µ2i| < |βiA|, the lower bound for P (E2) is:

P (E2)low = 1− σ2ii√
2π

q∑
i=1

[
1

|βiA − µ2i|
e
−(βiA−µ2i)

2

2σ2
2ii ] (B.45)

Replace |µ2i| with |µ̃2i|, clearly, |µ̃2i| > |µ2i|, same with the above discussion, it
can be proved P (E2)low will decrease when |µ2i| increase. Achieve the lower bound
too.

Proof of Theorem 3

RSS1 = C−1pq
∑
A

∑
j

trace(x
′

jxA(x
′

AxA)−2x
′

Axj) =
∑
A

∑
j

x
′

jxA(n)−2x
′

Axj

= C−1pq
1

n2

∑
A

∑
j

x
′

jxAx
′

Axj = C−1pq
1

n2

∑
A

∑
j

(x
′

Axj)
′
x
′

Axj

=
1

n2
E(s2)

(B.46)

Proof of Proposition 2
We can get the gradient of RSSq for any given column, noted as Xb. Recall the

definition of RSSq:

RSSq(D) =
∑

A:|A|=q

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∑
A

trace(X ′CXA(XA
′XA)−2X ′AXC)

Now we sequentially look into the scenarios with different q.
(1) q = 1
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Firstly, separate the summation into two parts, Xb ∈ A or Xb /∈ A,

RSSq(D) =
∑

A:|A|=q

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∑
Xb∈A

‘
∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj +

∑
Xb /∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∑
Xb∈A

∑
j∈C

X ′jXb(Xb
′Xb)

−2X ′bXj +
∑
i 6=b

∑
j∈C

X ′jXi(Xi
′Xi)

−2X ′iXj

=
∑
Xb∈A

∑
j∈C

X ′jXb(Xb
′Xb)

−2X ′bXj +
∑
i 6=b

∑
j∈C

X ′jXi(Xi
′Xi)

−2X ′iXj

= n−2[
∑
Xb∈A

∑
j∈C

X ′jXbX
′
bXj +

∑
i 6=b

∑
j∈C

X ′jXiX
′
iXj]

The partial gradient of RSS1 for Xb is:

∂

∂Xb

RSS1 = n−2
∂

∂Xb

[
∑
Xb∈A

∑
j∈C

X ′jXbX
′
bXj] + n−2

∂

∂Xb

[
∑
i 6=b

∑
j∈C

X ′jXiX
′
iXj]

= n−2
∂

∂Xb

[
∑
j∈C

X ′bXjX
′
jXb] + n−2

∂

∂Xb

[
∑
i 6=b

X ′bXiX
′
iXb]

= 2n−2
∂

∂Xb

[
∑
j∈C

X ′bXjXj
′Xb]

= 4n−2XcX
′
cXb

(2) q = 2
Similarly, separate the summation into two parts, Xb ∈ A or Xb /∈ A,

RSSq(D) =
∑

A:|A|=q

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∑
Xb∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj +

∑
Xb /∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

= RSSA(2) + RSSB(2)
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Here, For RSSA(2), note Xi as the other column in A except the Xb, the partial
gradient of RSSA(2)is

∂

∂Xb

RSSA(2) =
∂

∂Xb

∑
Xb∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∂

∂Xb

∑
Xb∈A

∑
j∈C

X ′j(Xb, Xi)

(
Xb
′Xb Xb

′Xi

Xi
′Xb Xi

′Xi

)−2(
X ′b
X ′i

)
Xj

=
∂

∂Xb

∑
Xb∈A

∑
j∈C

(Xj
′Xb, Xj

′Xi)

(
Xb
′Xb Xb

′Xi

Xi
′Xb Xi

′Xi

)−2(
Xb
′Xj

Xi
′Xj

)

=
∂

∂Xb

∑
Xb∈A

∑
j∈C

(S,C)

(
n t

t n

)−2(
S

C

)

=
∂

∂S
[
∑
Xb∈A

∑
j∈C

(S,C)

(
n t

t n

)−2(
S

C

)
]
∂S

∂Xb

+
∂

∂t
[
∑
Xb∈A

∑
j∈C

(S,C)

(
n t

t n

)−2(
S

C

)
]
∂t

∂Xb

= PA
(2)
1 + PA

(2)
2

where, S = Xj
′Xb, C = Xj

′Xi, t = Xb
′Xi, n is the row number of X. Then the

first term of above equation is

PA
(2)
1 =

∂

∂S
[
∑
Xb∈A

∑
j∈C

(S,C)

(
n t

t n

)−2(
S

C

)
]
∂S

∂Xb

=
∑
Xb∈A

∑
j∈C

[2(1, 0)

(
n t

t n

)−2(
S

C

)
]Xj
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The second term of the above equation is

PA
(2)
2 =

∂

∂t
[
∑
Xb∈A

∑
j∈C

(S,C)

(
n t

t n

)−2(
S

C

)
]
∂t

∂Xb

=
∑
Xb∈A

∑
j∈C

(S,C)
∂

∂t
[

(
n t

t n

)−2
]

(
S

C

)
Xi

=
∑
Xb∈A

∑
j∈C

(S,C)[
∂

∂t
[

(
n t

t n

)−1
]

(
n t

t n

)−1
+

(
n t

t n

)−1
∂

∂t
[

(
n t

t n

)−1
]]

(
S

C

)
Xi

= −2
∑
Xb∈A

∑
j∈C

(S,C)[

(
n t

t n

)−1(
0 1

1 0

)(
n t

t n

)−2
+

(
n t

t n

)−2(
0 1

1 0

)(
n t

t n

)−1
]

(
S

C

)
Xi

For RSSB, the partial gradient is

∂

∂Xb

RSSB(2) =
∂

∂Xb

[
∑
Xb /∈A

∑
j∈C

X ′jXA(X ′AXA)−2X ′AXj]

=
∂

∂Xb

[
∑
Xb /∈A

X ′bXA(X ′AXA)−2X ′AXb]

=
∑
Xb /∈A

2XA(X ′AXA)−2X ′AXb

Thus, the partial gradient of RSS2 is

∂

∂Xb

RSS2 =
∂

∂Xb

RSSA(2) +
∂

∂Xb

RSSB(2)

= PA
(2)
1 + PA

(2)
2 +

∂

∂Xb

PB(2)

(3) q = 3
Similarly, separate the summation into two parts, Xb ∈ A or Xb /∈ A,

RSSq(D) =
∑

A:|A|=q

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∑
Xb∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj +

∑
Xb /∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

= RSSA(3) + RSSB(3)

Here, For RSSA(3), note Xi1 , Xi2 as the other two columns in A except the Xb,
the partial gradient of RSSA(3) is



99

Let T3 =

Xb
′Xb Xb

′Xi1 Xb
′Xi2

Xi1
′Xb Xi1

′Xi1 Xi1
′Xi2

Xi2
′Xb Xi2

′Xi1 Xi2
′Xi2

−2X ′b
X ′i1
X ′i2


∂

∂Xb

RSSA(3) =
∂

∂Xb

∑
Xb∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∂

∂Xb

∑
Xb∈A

∑
j∈C

X ′j(Xb, Xi1 , Xi2)T
−2
3

X ′b
X ′i1
X ′i2

Xj

=
∂

∂Xb

∑
Xb∈A

∑
j∈C

(Xj
′Xb, Xj

′Xi1 , Xj
′Xi2)T

−2
3

Xb
′Xj

Xi1
′Xj

Xi2
′Xj


=

∂

∂Xb

∑
Xb∈A

∑
j∈C

(S,C1, C2)

n t1 t2
t1 n H1

t2 H1 n

−2 S
C1

C2


=

∂

∂S
Z

∂

∂Xb

S +
∂

∂t1
Z

∂

∂Xb

t1 +
∂

∂t2
Z

∂

∂Xb

t2

= (
∂

∂S
Z)X ′j + (

∂

∂t1
Z)X ′i1 + (

∂

∂t2
Z)X ′i2

= PA
(3)
1 + PA

(3)
2 + PA

(3)
3

where,

Z =
∑
Xb∈A

∑
j∈C

(S,C1, C2)

n t1 t2
t1 n H1

t2 H1 n

−2 S
C1

C2

 ,

Let S = Xj
′Xb, C1 = Xj

′Xi1 , C2 = Xj
′Xi2 , H1 = Xi1

′Xi2 , t1 = Xb
′Xi1 , t2 =

Xb
′Xi2 , n = Xb

′Xb = Xi1
′Xi1 = Xi2

′Xi2 .

Let B =

n t1 t2
t1 n H1

t2 H1 n


Then,

PA
(3)
1 = (

∂

∂S
Z)X ′j

=
∑
Xb∈A

∑
j∈C

(2(1, 0, 0)

n t1 t2
t1 n H1

t2 H1 n

−2 S
C1

C2

X ′j)

PA
(3)
2 = (

∂

∂t1
Z)X ′i1

=
∑
Xb∈A

∑
j∈C

(−2(S,C1, C2)[B
−1

0 1 0
1 0 0
0 0 0

B−2 +B−2

0 1 0
1 0 0
0 0 0

B−1]

 S
C1

C2

X ′i1)
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PA
(3)
3 = (

∂

∂t2
Z)X ′i2

=
∑
Xb∈A

∑
j∈C

(−2(S,C1, C2)[B
−1

0 0 1
0 0 0
1 0 0

B−2 +B−2

0 0 1
0 0 0
1 0 0

B−1]

 S
C1

C2

X ′i1)

For RSSB, similar with RSS2, the partial gradient is

∂

∂Xb

RSSB(3) =
∂

∂Xb

[
∑
Xb /∈A

∑
j∈C

X ′jXA(X ′AXA)−2X ′AXj]

=
∂

∂Xb

[
∑
Xb /∈A

X ′bXA(X ′AXA)−2X ′AXb]

=
∑
Xb /∈A

2XA(X ′AXA)−2X ′AXb

= PB(3).

Thus, the partial gradient of RSS3 is

∂

∂Xb

RSSB3 =
∂

∂Xb

RSSA(3) +
∂

∂Xb

RSSB(3)

= PA
(3)
1 + PA

(3)
2 + PA

(3)
3 + PB(3)

(4) for genearl q
From the Mathematical Induction, it’s easy to get any q scenarios partial gradient

formulation:
Similarly, separate the summation into two parts, Xb ∈ A or Xb /∈ A,

RSSq(D) =
∑

A:|A|=q

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∑
Xb∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj +

∑
Xb /∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

= RSSA(q) + RSSB(q)

Here, For RSSA(q), note Xi1 , Xi2 , . . . , Xiq−1 as the other columns in A except the

Xb, the partial gradient of RSSA(q) is
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Let Tq =


Xb
′Xb Xb

′Xi1 Xb
′Xi2 . . . Xb

′Xiq−1

Xi1
′Xb Xi1

′Xi1 Xi1
′Xi2 . . . Xi1

′Xiq−1

Xi2
′Xb Xi2

′Xi1 Xi2
′Xi2 . . . Xi2

′Xiq−1

. . . . . . . . . . . .
Xiq−1

′Xb Xiq−1

′Xi1 Xiq−1

′Xi2 . . . Xiq−1

′Xiq−1


=

∂

∂Xb

∑
Xb∈A

∑
j∈C

X ′jXA(XA
′XA)−2X ′AXj

=
∂

∂Xb

∑
Xb∈A

∑
j∈C

X ′j(Xb, Xi1 , Xi2 , . . . , Xiq−1)T
−2
q


X ′b
X ′i1
X ′i2
. . .
X ′iq−1

Xj

=
∂

∂Xb

∑
Xb∈A

∑
j∈C

(Xj
′Xb, Xj

′Xi1 , Xj
′Xi2 , . . . , Xj

′Xiq−1)T
−2
q


Xb
′Xj

Xi1
′Xj

Xi2
′Xj

. . .
Xiq−1

′Xj



=
∂

∂Xb

∑
Xb∈A

∑
j∈C

(S,C1, C2, . . . , Cq−1)


n t1 t2 . . . tq−1
t1 n H1,2 . . . H1,q−1
t2 H1,2 n . . . H2,q−1
. . . . . . . . . . . . . . .
tq−1 H1,q−1 H2,q−1 . . . n


−2

S
C1

C2

. . .
Cq−1


=

∂

∂S
Z

∂

∂Xb

S +
∂

∂t1
Z

∂

∂Xb

t1 +
∂

∂t2
Z

∂

∂Xb

t2 + · · ·+ ∂

∂t2
Z

∂

∂Xb

tq−1

= (
∂

∂S
Z)X ′j + (

∂

∂t1
Z)X ′i1 + (

∂

∂t2
Z)X ′i2 + · · ·+ (

∂

∂t2
Z)X ′iq−1

= PA
(q)
1 + PA

(q)
2 + PA

(q)
3 + · · ·+ PA

(q)
k−1

where,

Z =
∑
Xb∈A

∑
j∈C

(S,C1, C2, . . . , Cq−1)


n t1 t2 . . . tq−1
t1 n H1,2 . . . H1,q−1
t2 H1,2 n . . . H2,q−1
. . . . . . . . . . . . . . .
tq−1 H1,q−1 H2,q−1 . . . n


−2

S
C1

C2

. . .
Cq−1

 .

Let S = Xj
′Xb, C1 = Xj

′Xi1 , C2 = Xj
′Xi2 , Cq−1 = Xi1

′Xiq−1 , t1 = Xb
′Xi1 ,

t2 = Xb
′Xi2 , n = Xb

′Xb = Xi1
′Xi1 = Xi2

′Xi2 = · · · = Xiq−1

′Xiq−1 , H1,2 = Xi1
′Xi2 ,

H1,q−1 = Xi1
′Xiq−1 , H2,q−1 = Xi2

′Xiq−1 .
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Let B =


n t1 t2 . . . tq−1
t1 n H1,2 . . . H1,q−1
t2 H1,2 n . . . H2,q−1
. . . . . . . . . . . . . . .
tq−1 H1,q−1 H2,q−1 . . . n


Then,

PA
(q)
1 = (

∂

∂S
Z)X ′j

=
∑
Xb∈A

∑
j∈C

(2(1, 01, 02, . . . , 0q−1)


n t1 t2 . . . tq−1
t1 n H1,2 . . . H1,q−1
t2 H1,2 n . . . H2,q−1
. . . . . . . . . . . . . . .
tq−1 H1,q−1 H2,q−1 . . . n


−2

S
C1

C2

. . .
Cq−1

X ′j)

PA
(q)
2 = (

∂

∂t1
Z)X ′i1

=
∑
Xb∈A

∑
j∈C

(−2(S,C1, C2, . . . , Cq−1)[B
−1


0 1 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0


q×q

B−2

+B−2


0 1 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0


q×q

B−1]


S
C1

C2

. . .
Cq−1

X ′i1)

PA
(q)
3 = (

∂

∂t2
Z)X ′i2

=
∑
Xb∈A

∑
j∈C

(−2(S,C1, C2, . . . , Cq−1)[B
−1


0 0 1 . . . 0
0 0 0 . . . 0
1 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0


q×q

B−2

+B−2


0 0 1 . . . 0
0 0 0 . . . 0
1 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0


q×q

B−1]


S
C1

C2

. . .
Cq−1

X ′i2)

. . .
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PA(q)
q = (

∂

∂t1
Z)X ′iq−1

=
∑
Xb∈A

∑
j∈C

(−2(S,C1, C2, . . . , Cq−1)[B
−1


0 0 0 . . . 1
0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
1 0 0 . . . 0


q×q

B−2

+B−2


0 0 0 . . . 1
0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
1 0 0 . . . 0


q×q

B−1]


S
C1

C2

. . .
Cq−1

X ′iq−1
)

Let Mh
q to be the q by q matrix in which the element (h, 1) and (1, h) is 1 and all

the others are 0, then in general case

PA
(q)
h = (

∂

∂t1
Z)X ′ih−1

=
∑
Xb∈A

∑
j∈C

(−2(S,C1, C2, . . . , Cq−1)B
−1[Mh

q B
−1 +B−1Mh

q ]B−1


S
C1

C2

. . .
Cq−1

X ′ih−1
)

For RSSB(q), the partial gradient is

∂

∂Xb

RSSB(q) =
∂

∂Xb

[
∑
Xb /∈A

∑
j∈C

X ′jXA(X ′AXA)−2X ′AXj]

=
∂

∂Xb

[
∑
Xb /∈A

X ′bXA(X ′AXA)−2X ′AXb]

=
∑
Xb /∈A

2XA(X ′AXA)−2X ′AXb

Thus, the partial gradient of RSSBq is

∂

∂Xb

RSSBq =
∂

∂Xb

RSSA(q) +
∂

∂Xb

RSSA(q)

= PA
(q)
1 +

q∑
h=2

PA
(q)
h + PB(q)
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