4 research outputs found

    Qualitative and Quantitative Monitoring of Spatio-Temporal Properties with SSTL

    Get PDF
    In spatially located, large scale systems, time and space dynamics interact and drives the behaviour. Examples of such systems can be found in many smart city applications and Cyber-Physical Systems. In this paper we present the Signal Spatio-Temporal Logic (SSTL), a modal logic that can be used to specify spatio-temporal properties of linear time and discrete space models. The logic is equipped with a Boolean and a quantitative semantics for which efficient monitoring algorithms have been developed. As such, it is suitable for real-time verification of both white box and black box complex systems. These algorithms can also be combined with stochastic model checking routines. SSTL combines the until temporal modality with two spatial modalities, one expressing that something is true somewhere nearby and the other capturing the notion of being surrounded by a region that satisfies a given spatio-temporal property. The monitoring algorithms are implemented in an open source Java tool. We illustrate the use of SSTL analysing the formation of patterns in a Turing Reaction-Diffusion system and spatio-temporal aspects of a large bike-sharing system

    Three-Valued Spatio-Temporal Logic: a further analysis on spatio-temporal properties of stochastic systems

    Get PDF
    In this paper we present Three-Valued Spatio-Temporal Logic (TSTL), which enriches the available spatio-temporal analysis of properties expressed in Signal Spatio-Temporal Logic (SSTL), to give further insight into the dynamic behaviour of systems. Our novel analysis starts from the estimation of satisfaction probabilities of given SSTL properties and allows the analysis of their temporal and spatial evolution. Moreover, in our verification procedure, we use a three-valued approach to include the intrinsic and unavoidable uncertainty related to the simulation-based statistical evaluation of the estimates; this can be also used to assess the appropriate number of simulations to use depending on the analysis needs. We present the syntax and three-valued semantics of TSTL and a specific extended monitoring algorithm to check the validity of TSTL formulas. We conclude with two case studies that demonstrate how TSTL broadens the application of spatio-temporal logics in realistic scenarios, enabling analysis of threat monitoring and control programmes based on spatial stochastic population models

    Analysis of spatio-temporal properties of stochastic systems using TSTL

    Get PDF
    In this article, we present Three-Valued spatio-temporal Logic (TSTL), which enriches the available spatiotemporal analysis of properties expressed in Signal spatio-temporal Logic (SSTL), to give further insight into the dynamic behavior of systems. Our novel analysis starts from the estimation of satisfaction probabilities of given SSTL properties and allows the analysis of their temporal and spatial evolution. Moreover, in our verification procedure, we use a three-valued approach to include the intrinsic and unavoidable uncertainty related to the simulation-based statistical evaluation of the estimates; this can be also used to assess the appropriate number of simulations to use depending on the analysis needs. We present the syntax and three-valued semantics of TSTL and specific extended monitoring algorithms to check the validity of TSTL formulas. We introduce a reliability requirement for TSTL monitoring and an automatic procedure to verify it. Two case studies demonstrate how TSTL broadens the application of spatio-temporal logics in realistic scenarios, enabling analysis of threat monitoring and privacy preservation based on spatial stochastic population models

    jSSTL - A tool to monitor spatio-temporal properties

    No full text
    Controlling and designing spatio-temporal behaviours requires proper formal tools to describe such properties, and to monitor and verify whether, and how robustly, they are satisfied by a system. In this paper, we introduce jSSTL, a Java tool for the specification of Signal Spatio-Temporal Logic (SSTL) properties and their robust monitoring on spatio-temporal trajectories. The tool consists of a jSSTL API and a front-end, integrated in ECLIPSE. We describe in details the framework and the use of the plugin, exploiting a running example of a cholera outbreak
    corecore