2,224,456 research outputs found

    Accurate 2D MoM technique for arbitrary dielectric, magnetic and conducting media applied to shielding problems

    Get PDF
    Calculating interaction integrals in a Method of Moments technique is highly challenging in a conductive medium. The specific form of its wave number leads to a strongly oscillating and exponentially damped Green's function, making standard numerical evaluation schemes inapt to accurately evaluate the interaction integrals. In this paper, we present an accurate 2D Method of Moments technique for arbitrary dielectric, magnetic and conducting media and apply the method to solve shielding problems

    The Effects of Finger-Walking in Place (FWIP) on Spatial Knowledge Acquisition in Virtual Environments

    Get PDF
    Spatial knowledge, necessary for efficient navigation, comprises route knowledge (memory of landmarks along a route) and survey knowledge (overall representation like a map). Virtual environments (VEs) have been suggested as a power tool for understanding some issues associated with human navigation, such as spatial knowledge acquisition. The Finger-Walking-in-Place (FWIP) interaction technique is a locomotion technique for navigation tasks in immersive virtual environments (IVEs). The FWIP was designed to map a human’s embodied ability overlearned by natural walking for navigation, to finger-based interaction technique. Its implementation on Lemur and iPhone/iPod Touch devices was evaluated in our previous studies. In this paper, we present a comparative study of the joystick’s flying technique versus the FWIP. Our experiment results show that the FWIP results in better performance than the joystick’s flying for route knowledge acquisition in our maze navigation tasks

    High precision measurement of the Dzyaloshinsky-Moriya interaction between two rare-earth ions in a solid

    Full text link
    We report on a direct measurement of the pair-wise anti-symmetric exchange interaction, known as the Dzyaloshinsky-Moriya interaction (DMI), in a Nd3+-doped YVO4 crystal. To this end we introduce a broadband electron spin resonance technique coupled with an optical detection scheme which selectively detects only one Nd3+-Nd3+ pair. Using this technique we can fully determine the spin-spin coupling tensor, allowing us to experimentally determine both the strength and direction of the DMI vector. We believe that this ability to fully determine the interaction Hamiltonian is of interest for studying the numerous magnetic phenomena where the DMI interaction is of fundamental importance, including multiferroics. We also detect a singlet-triplet transition within the pair, with a highly suppressed magnetic-field dependence, which suggests that such systems could form singlet-triplet qubits with long coherence times for quantum information applications
    corecore