40,291 research outputs found

    Integer-ambiguity resolution in astronomy and geodesy

    Full text link
    Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer-ambiguity problems. Those problems, which appear in the self-calibration procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP) problems encountered in high-precision geodetic positioning, and in global navigation satellite systems. In this paper, we analyse the theoretical aspects of the matter and propose new methods for solving those NLP problems. The related optimization aspects concern both the preconditioning stage, and the discrete-search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests.Comment: 12 pages. Soumis et accept\'e pour publication dans "Astronomische Nachrichten

    System and method for generating attitude determinations using GPS

    Get PDF
    A GPS attitude receiver for determining the attitude of a moving vehicle in conjunction with a first, a second, a third, and a fourth antenna mounted to the moving vehicle. Each of the antennas receives a plurality of GPS signals that each include a carrier component. For each of the carrier components of the received GPS signals there is an integer ambiguity associated with the first and fourth antennas, an integer ambiguity associated with second and fourth antennas, and an integer ambiguity associated with the third and fourth antennas. The GPS attitude receiver measures phase values for the carrier components of the GPS signals received from each of the antennas at a plurality of measurement epochs during an initialization period and at a measurement epoch after the initialization period. In response to the phase values measured at the measurement epochs during the initialization period, the GPS attitude receiver computes integer ambiguity resolution values representing resolution of the integer ambiguities. Then, in response to the computed integer ambiguity resolution values and the phase value measured at the measurement epoch after the initialization period, it computes values defining the attitude of the moving vehicle at the measurement epoch after the initialization period

    The impact of new signals on precise marine navigation - initial results from an experiment in Harwich Harbour

    Get PDF
    The General Lighthouse Authorities of the United Kingdom and Ireland (GLAs) are supporting a project at University College London (UCL) to study whether it is possible to meet the International Maritime Organisation’s (IMO) future requirements for port and harbour approach using future GNSS constellations, as detailed in IMO resolution A.915. This paper presents the results of a trial focusing on the accuracy, integrity, availability and continuity of port navigation, port approach, and docking. Abstract The required accuracy for docking is 0.1 m (95\%), which currently necessitates the use of Real Time Kinematic (RTK) processing. We consider the single-epoch geometry-based approach, which is robust against loss of lock and will fully benefit from the additional satellites. The trial was held at the beginning of May 2008 and saw THV Alert navigate into Harwich Harbour while satellite observation data were recorded from the vessel and from shore-based reference stations. Additional data were obtained from nearby Ordnance Survey reference stations, and two total stations were used to track the vessel’s passage to provide a truth model. Several modernised GPS satellites were tracked. The data were processed under different scenarios, using software developed at UCL, and the positioning performance analysed. Abstract Providing integrity for single-epoch RTK is particularly difficult. The identification of phase observation outliers is not possible before the integer ambiguities are resolved, but an undetected outlier could prevent successful ambiguity resolution. However, it will not always be necessary to fix every ambiguity to achieve the required precision, particularly with a multi-GNSS constellation. This paper introduces a new algorithm for partial ambiguity resolution in the presence of measurement bias that has been developed and tested at UCL.  This algorithm results in an improved ambiguity resolution success rate at the expense of computation time

    MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms

    Get PDF
    The concept of multiple-input multiple-output (MIMO) radars has drawn considerable attention recently. Unlike the traditional single-input multiple-output (SIMO) radar which emits coherent waveforms to form a focused beam, the MIMO radar can transmit orthogonal (or incoherent) waveforms. These waveforms can be used to increase the system spatial resolution. The waveforms also affect the range and Doppler resolution. In traditional (SIMO) radars, the ambiguity function of the transmitted pulse characterizes the compromise between range and Doppler resolutions. It is a major tool for studying and analyzing radar signals. Recently, the idea of ambiguity function has been extended to the case of MIMO radar. In this paper, some mathematical properties of the MIMO radar ambiguity function are first derived. These properties provide some insights into the MIMO radar waveform design. Then a new algorithm for designing the orthogonal frequency-hopping waveforms is proposed. This algorithm reduces the sidelobes in the corresponding MIMO radar ambiguity function and makes the energy of the ambiguity function spread evenly in the range and angular dimensions
    corecore