32,145 research outputs found
Insular cortex hypoperfusion and acute phase blood glucose after stroke: a CT perfusion study
<p><b>Background and Purpose:</b> Insular cortex ischemia is proposed to mediate a sympathetic stimulus that leads to acute hyperglycemia after stroke.</p>
<p><b>Methods:</b> We retrospectively analyzed insular perfusion on perfusion CT (median 180 minutes after onset) in 35 patients.</p>
<p><b>Results:</b> We found no association of hypoperfusion (relative cerebral blood flow <0.51) with early (<6 hours) or delayed (<72 hours) hyperglycemia, or hemispheric lateralization.</p>
<p><b>Conclusions:</b> Insular cortex hypoperfusion <6 hours after stroke onset was not associated with hyperglycemia.</p>
Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise
We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention
The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans
The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology
Neuroanatomical substrates for the volitional regulation of heart rate
The control of physiological arousal can assist in the regulation of emotional state. A subset cortical and subcortical brain regions are implicated in autonomic control of bodily arousal during emotional behaviors. Here, we combined human functional neuroimaging with autonomic monitoring to identify neural mechanisms that support the volitional regulation of heart rate, a process that may be assisted by visual feedback. During functional magnetic resonance imaging (fMRI), 15 healthy adults performed an experimental task in which they were prompted voluntarily to increase or decrease cardiovascular arousal (heart rate) during true, false, or absent visual feedback. Participants achieved appropriate changes in heart rate, without significant modulation of respiratory rate, and were overall not influenced by the presence of visual feedback. Increased activity in right amygdala, striatum and brainstem occurred when participants attempted to increase heart rate. In contrast, activation of ventrolateral prefrontal and parietal cortices occurred when attempting to decrease heart rate. Biofeedback enhanced activity within occipito-temporal cortices, but there was no significant interaction with task conditions. Activity in regions including pregenual anterior cingulate and ventral striatum reflected the magnitude of successful task performance, which was negatively related to subclinical anxiety symptoms. Measured changes in respiration correlated with posterior insula activation and heart rate, at a more lenient threshold, change correlated with insula, caudate, and midbrain activity. Our findings highlight a set of brain regions, notably ventrolateral prefrontal cortex, supporting volitional control of cardiovascular arousal. These data are relevant to understanding neural substrates supporting interaction between intentional and interoceptive states related to anxiety, with implications for biofeedback interventions, e.g., real-time fMRI, that target emotional regulation
Effects of Insular Cortex Lesions on Conditioned Taste Aversion and Latent Inhibition in the Rat
The present study tested the hypothesis that lesions of the insular cortex of the rat retard the acquisition of conditioned taste aversions (CTAs) because of an impairment in the detection of the novelty of taste stimuli. Demonstrating the expected latent inhibition effect, nonlesioned control subjects acquired CTAs more rapidly when the conditioned stimulus (0.15% sodium saccharin) was novel rather than familiar (achieved by pre-exposure to the to-be-conditioned taste cue). However, rats with insular cortex lesions acquired taste aversions at the same slow rate regardless of whether the saccharin was novel or familiar. The pattern of behavioural deficits obtained cannot be interpreted as disruptions of taste detection or stimulus intensity, but is consistent with the view that insular cortex lesions disrupt taste neophobia, a dysfunction that consequently retards CTA acquisition because of a latent inhibition-like effect
Commentary: Prestimulus theta oscillations and connectivity modulate pain perception
Pain experience includes the fine-grain integration of both attentive and automatic (bottom-up; Legrain et al., 2012), as well as affective and intentional (top-down; Buschman and Miller, 2007) processes. While the neural underpinnings of post-stimulus pain processing have been deeply explored (Hauck et al., 2008), the oscillatory brain activity preceding pain processing is less far investigated
Middle short gyrus of the insula implicated in speech production: intracerebral electric stimulation of patients with epilepsy.
International audiencePURPOSE: Different lines of evidence have suggested an involvement of the insular cortex in speech production. These have included results from lesion studies, functional imaging techniques, and electrical stimulation of the human insular cortex during invasive evaluation of epileptic patients. METHODS: We evaluated 25 patients who had drug refractory focal epilepsy with at least one electrode stereotactically implanted in the insular cortex. RESULTS: Eight responses to insular cortex electrical stimulation were reported by five patients as speech arrest (five responses) and a lowering of voice intensity (three responses). CONCLUSIONS: Data from this study implicate the middle short gyrus of the insula in the production of speech and show the importance of intrainsular electrode implantation during invasive pre-resection evaluation by stereo-electroencephalography (SEEG) when speech arrest occurs early in seizure semiology
An interoceptive predictive coding model of conscious presence
We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness
The Insula and Its Epilepsies
Insular seizures are great mimickers of seizures originating elsewhere in the brain. The insula is a highly connected brain structure. Seizures may only become clinically evident after ictal activity propagates out of the insula with semiology that reflects the propagation pattern. Insular seizures with perisylvian spread, for example, manifest first as throat constriction, followed next by perioral and hemisensory symptoms, and then by unilateral motor symptoms. On the other hand, insular seizures may spread instead to the temporal and frontal lobes and present like seizures originating from these regions. Due to the location of the insula deep in the brain, interictal and ictal scalp electroencephalogram (EEG) changes can be variable and misleading. Magnetic reso- nance imaging, magnetic resonance spectroscopy, magnetoencephalography, positron emission tomography, and single-photon computed tomography imaging may assist in establishing a diagnosis of insular epilepsy. Intracranial EEG recordings from within the insula, using stereo-EEG or depth electrode techniques, can prove insular seizure origin. Seizure onset, most commonly seen as low-voltage, fast gamma activity, however, can be highly localized and easily missed if the insula is only sparsely sampled. Moreover, seizure spread to the contralateral insula and other brain regions may occur rapidly. Extensive sampling of the insula with multiple electrode trajectories is necessary to avoid these pitfalls. Understanding the functional organization of the insula is helpful when interpreting the semiology produced by insular seizures. Electrical stimulation mapping around the central sulcus of the insula results in paresthesias, while stimulation of the posterior insula typically produces painful sensations. Visceral sensations are the next most common result of insular stimulation. Treatment of insular epilepsy is evolving, but poses challenges. Surgical resections of the insula are effective but risk significant morbidity if not carefully planned. Neurostimulation is an emerging option for treatment, especially for seizures with onset in the posterior insula. The close association of the insula with marked autonomic changes has led to interest in the role of the insula in sudden unexpected death in epilepsy and warrants additional study with larger patient cohorts
- …
