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Effects of insular cortex lesions on conditioned taste aversion and 
latent inhibition in the rat 

 
Christopher Roman 

Steve Reilly 

 

Abstract 

The present study tested the hypothesis that lesions of the insular cortex of the rat retard the 
acquisition of conditioned taste aversions (CTAs) because of an impairment in the detection of 

the novelty of taste stimuli. Demonstrating the expected latent inhibition effect, nonlesioned 
control subjects acquired CTAs more rapidly when the conditioned stimulus (0.15% sodium 
saccharin) was novel rather than familiar (achieved by pre-exposure to the to-be-conditioned 
taste cue). However, rats with insular cortex lesions acquired taste aversions at the same slow 

rate regardless of whether the saccharin was novel or familiar. The pattern of behavioural deficits 
obtained cannot be interpreted as disruptions of taste detection or stimulus intensity, but is 

consistent with the view that insular cortex lesions disrupt taste neophobia, a dysfunction that 
consequently retards CTA acquisition because of a latent inhibition-like effect. 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: conditioned taste aversion; gustatory neophobia; insular cortex; latent inhibition; rat 

 



2 
 

Introduction 

Numerous studies report that damage/inactivation of the insular cortex (IC) disrupts acquisition of 
conditioned taste aversion (CTA) (e.g. Braun et al., 1972; Bermúdez-Rattoni & McGaugh, 1991; 
Gallo et al., 1992; Cubero et al., 1999; Fresquet et al., 2004), whereas others have found that IC 
lesions spare CTA (e.g. Mackey et al., 1986; Roldan & Bures, 1994; Yamamoto et al., 1995; Sakai 
& Yamamoto, 1999). Among the studies that report impairments, there is a lack of consensus on 
the nature of the deficit. 

Many of the studies cited above used a one-trial conditioning procedure, a design choice that may 
not provide sufficient opportunity to allow proper determination of the nature of a lesion-induced 
CTA deficit (Reilly & Bornovalova, 2005). This shortcoming is exacerbated when combined with 
inadvertent pre-exposure to the taste cue [conditioned stimulus (CS)] prior to conditioning, 
because CTAs are more slowly acquired by a familiar and safe (i.e. pre-exposed) CS than by a 
novel CS [a phenomenon termed latent inhibition; e.g. Lubow (1989, 2008)]. In the absence of 
appropriate control (i.e. nonpre-exposed) animals, it is not possible to determine whether any 
obtained lesion-induced deficit should be interpreted as a disruption of the mechanisms involved 
in CTA, latent inhibition, or both. 

Recently, we reported that IC lesions attenuated CTA but had no influence on the acquisition of a 
conditioned odour aversion (Roman et al., 2006). Because the CTA deficit was most pronounced 
on the first conditioning trial (lesioned rats drank twice as much saccharin as control subjects), the 
disruption seemed to be best interpreted as a decreased ability to process some aspect of the taste 
stimulus, perhaps a failure to recognize taste novelty. 

When conducting a CTA latent inhibition study with a preparation that might show disrupted 
responsivity to novel taste stimuli, it is important to minimize the potentially confounding 
influence of a lesion-induced elevation of consumption on learning by limiting the amount of CS 
that can be ingested during both the pre-exposure and conditioning trials (e.g. Reilly et al., 2003; 
St Andre & Reilly, 2007). Furthermore, with the exception of Kiefer & Braun (1977), all of the 
studies that have examined CTA acquisition in pre-exposed insular cortex-lesioned (ICX) rats 
failed to include a group of nonpre-exposed control rats (e.g. Hankins et al., 1974; Kiefer et al., 
1984; Dunn & Everitt, 1988; Bermúdez-Rattoni & McGaugh, 1991). Thus, unambiguous 
interpretation of the effects of IC lesions on CTA acquisition in these reports is not possible. 
Although the Kiefer and Braun experiment did include nonpre-exposed control subjects, their 
design did not control for lesion-induced intake differences during the pre-exposure and 
conditioning trials, and nonselective lesions were employed. To more completely evaluate the role 
of the IC in CTA acquisition, the present study manipulated CS novelty in a design that involved 
capped intake and multiple conditioning trials in rats with neurotoxic lesions. 

Materials and Methods 

Experimental subjects 

The subjects used in this experiment were 42 male Sprague-Dawley rats purchased from Charles 
River Laboratories (Wilmington, MA). Rats were housed individually in hanging steel mesh cages 

http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b1
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b2
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b3
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b4
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b5
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b6
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b7
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b8
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b8
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b9
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b10
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b11
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b13
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b14
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b15
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b16
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b17
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b18
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with ad libitum food and water except where otherwise noted. The vivarium was kept on a 12-h 
light/dark schedule, with lights on at 7:00 a.m. Experimental treatments and procedures were 
performed during the light phase of this cycle. All rats were between 290 g and 320 g at the time 
of surgery. The subjects were treated in accord with the ethical guidelines established by the 
National Institutes of Health's Guide for the Care and Use of Laboratory Animals and the 
American Psychological Association's Guidelines for Ethical Conduct in the Care and Use of 
Animals, and the experimental procedures were approved by the Institutional Animal Care and 
Users' Committee of the University of Illinois at Chicago. 

Surgery 

Twenty-two rats received bilateral lesions of the IC (group ICX). They were anaesthetized with an 
intraperitoneal injection of sodium pentobarbital (50 mg/kg) and fixed into a stereotaxic instrument 
(ASI, Warren, MI) with atraumatic earbars. Body temperature was monitored with a rectal 
thermometer and maintained at 37 °C with a heating pad (Harvard Apparatus, Holliston, MA). 
Bupivacaine (0.25%; Hospira, Lake Forest, IL) was subcutaneously injected into the scalp prior to 
a midline incision that exposed the cranial sutures. The skull was levelled between bregma and 
lambda, and trephine holes were drilled over the IC. A glass micropipette (tip ∼75 µm) containing 
0.15 mN-methyl-d-aspartate (St Louis, MO) was lowered into the IC in each hemisphere, and two 
iontophoretic infusions were delivered per hemisphere (site 1, 10-min infusion at AP +1.2, 
ML ± 5.2, DV −5.0; site 2, 6-min infusion at AP +1.2, ML ± 5.2, DV −4.3) using a Midgard 
precision current source (Stoelting, Wood Dale, IL). After the fourth infusion, the incision was 
closed with wound clips, and the rats were returned to their home cage once they had recovered 
from the anaesthesia. Control rats (group SHAM; n = 20) were anaesthetized using sodium 
pentobarbital, but did not undergo any further surgical treatments. All rats were given a minimum 
of 7 days to recover from surgery before the experiment began. 

Apparatus 

All experimental manipulations were performed in the home cages. Fluids were presented in 
inverted 100-mL Nalgene graduated cylinders with silicone stoppers and steel drinking tubes. 
Fluid consumption was recorded to the nearest 0.5 mL. 

Procedure 

After recuperation, the rats were placed on a water restriction schedule that permitted 15 min of 
access daily. This level of deprivation was used to maintain comparability with our previous study 
of the influence of IC lesions on CTA and conditioned odour aversion (Roman et al., 2006) and 
our work on latent inhibition in CTA (Reilly et al., 2003; St Andre & Reilly, 2007). Once water 
intake stabilized, the rats were divided into groups based on lesion (SHAM or ICX) and whether 
they would be pre-exposed (Familiar condition) or not (Novel condition) to the CS before 
conditioning: SHAM-Familiar (n = 10), SHAM-Novel (n = 10), ICX-Familiar (n = 11), and ICX-
Novel (n = 11). Rats in the Familiar condition were given access to 15 mL of the future CS [0.15% 
sodium saccharin (w/v)] on days 1–5, whereas rats in the Novel condition received an equivalent 
amount of water each day. On day 6, all rats received 10 mL of the CS, followed, 30 min after 
initial placement of the stimulus bottles, by an intraperitoneal injection of the unconditioned 

http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b13
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b14
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stimulus (US; 0.15 m lithium chloride injected at 1.33 mL/100 g body weight). This CS–US 
pairing was repeated on days 9, 12, 15, and 18, with 2 days of 15-min access to water on the 
intervening days. On day 21, all rats received a test trial consisting of 15 min of access to the CS 
(the US was omitted because it was superfluous). 

Histology 

After the behavioural testing was completed, the rats were deeply anaesthetized with sodium 
pentobarbital (100 mg/kg) and perfused transcardially with physiological saline and 4% buffered 
formalin. The brains were extracted and stored in 4% buffered formalin for 2 days, then transferred 
into 20% sucrose for at least 2 days. The brains were frozen, sliced on a cryostat at 50 µm, mounted 
on gelatin-coated slides, and stained with cresyl violet. The brain sections were evaluated with a 
light microscope (Zeiss Axioskop 40). Drawings of the lesions were made on diagrams obtained 
from the Paxinos & Watson (2005) atlas, and a representative photomicrograph of an IC lesion 
was taken using Q-Capture software (Quantitative Imaging Corporation, Burnaby, BC). 

Data analysis 

Using the Statistica software package (StatSoft, Tulsa, OK), the significance of the behavioural 
data (volume of fluid consumed) was assessed with analysis of variance (anova; the alpha level 
was set at P < 0.05). Fluid intake data are presented as the mean ± SEM. 

Results 

Anatomical analysis 

Located along the dorsal bank of the rhinal fissure on either side of the middle cerebral artery, the 
gustatory region of the IC is ∼0.5 mm wide dorsoventrally and ∼2.5 mm long anteroposteriorly 
(Kosar et al., 1986; Nakashima et al., 2000). The extent of the neurotoxic lesions was determined 
by the presence of gliosis and the absence (or shrivelling) of cell bodies. Rats with lesions that 
were unilateral (two Novel, one Familiar) or subtotal (two Familiar) were excluded from the study. 
The remaining rats (nine Novel, eight Familiar) had lesions that were bilaterally well placed within 
the IC with minimal encroachment into the claustrum, external capsule, and piriform cortex. Serial 
schematic reconstructions of the largest (grey) and smallest (black) lesions of rats that were 
included in the statistical analyses are shown in Fig. 1A. Figure 1B shows a photomicrograph of a 
representative IC lesion. Fig. 1C shows the same region in an intact brain. The IC lesions in the 
present study were comparable in location, although slightly larger in extent, to those in our earlier 
report (Roman et al., 2006). 

http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b20
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b21
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b22
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#f1
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#f1
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b13
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Figure 1. (A) Serial reconstructions of the smallest (black) and largest (grey) neurotoxic 
lesions of the insular cortex on diagrams adapted with permission from the Paxinos & 
Watson (2005) atlas. The numbers (0.00 mm, +0.60 mm, +1.20 mm, +1.80 mm, +2.28 mm) 
beneath each diagram refer to the anteroposterior coordinates relative to bregma. (B) 
Representative neurotoxic lesion of the insular cortex in the left hemisphere of an 
experimental rat taken at ∼0.8 mm anterior to bregma. (C) Corresponding section through 
the insular cortex of a neurologically intact subject. CPu, caudate putamen; rf: rhinal 
fissure; S2, secondary somatosensory cortex. 

Behavioural analysis 

On the day prior to the first saccharin pre-exposure trial, the mean (±SEM) water intake (mL) for 
each group was as follows: SHAM-Novel, 20.4 ± 0.89; SHAM-Familiar, 19.7 ± 0.96; ICX-Novel, 
18.1 ± 0.74; ICX-Familiar, 19.0 ± 0.92. A lesion (SHAM vs. ICX) × condition (Novel vs. Familiar) 
anova confirmed that there were no significant (F < 1) intergroup differences in water consumption 
prior to the saccharin pre-exposure trials. 

As is evident from inspection of the pre-exposure data shown in Fig. 2, the SHAM-Familiar 
subjects drank less saccharin on trial 1 than on trials 2–5, whereas the ICX-Familiar rats drank the 
maximal amount (15 mL) on each pre-exposure trial. These impressions were confirmed with an 

http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b20
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b20
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#f2
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anova that found significant main effects of lesion (F1,16 = 6.68, P < 0.05) and of pre-exposure 
trials (F4,64 = 7.496, P < 0.05), as well as a significant lesion × trials interaction (F4,64 = 7.496, 
P < 0.05). These data indicate the occurrence of a neophobic response in the SHAM subjects, and 
the absence of neophobia in the ICX rats, on the first saccharin pre-exposure trial. The SHAM and 
ICX subjects in the Novel condition drank 15 mL of water on each of the five pre-exposure trials. 

 
Figure 2.  Mean (±SEM) saccharin intake for neurologically intact (SHAM) 
subjects and insular cortex-lesioned (ICX) rats during the pre-exposure and 
conditioning phases of the experiment. 

The conditioning data summarized in Fig. 2 suggest that SHAM subjects displayed a pronounced 
latent inhibition effect, whereas rats in the ICX-Novel and ICX-Familiar groups acquired the 
saccharin aversion at the same slow rate. An anova conducted on the conditioning and test data 
confirmed significant main effects of condition (F1,165 = 19.60, P < 0.05), lesion (F1,165 = 38.93, 
P < 0.05), and trials (F5,165 = 146.13, P < 0.05), as well as a significant condition × lesion × trials 
interaction (F5,165 = 9.82, P < 0.05). To follow up the significant triple interaction, separate 
condition × trial anovas revealed that SHAM-Familiar subjects acquired the saccharin CTA 
significantly more slowly than SHAM-Novel rats (F5,90 = 30.93, P < 0.05). On the other hand, as 
indicated by the absence of a significant condition × trials interaction (F < 1), ICX-Novel rats 
acquired the saccharin CTA as slowly as the ICX-Familiar rats. Finally, ICX and SHAM rats were 
compared on each trial in the Novel condition, and separately in the Familiar condition. When the 
CS was novel, ICX rats consumed more saccharin than SHAM subjects on trials 2, 3, 4, and 5 
(P < 0.05), but not on trial 1 (F < 1; when intake was maximal in both groups) or the test trial 
(P > 0.10). Thus, IC lesions retarded but did not prevent CTA acquisition. When the CS was 
familiar, SHAM and ICX rats drank equivalent amounts of saccharin on the first three trials 
(P > 0.05), but on trials 4 and 5 and the test trial ICX rats consumed more than SHAM subjects 
(P < 0.05). Once again, then, IC lesions attenuated but did not prevent CTA acquisition. 

Discussion 

The neurologically intact subjects displayed a noticeable neophobic reaction on their initial 
exposure to saccharin during the pre-exposure phase of the experiment. Furthermore, saccharin 
pre-exposure attenuated CTA acquisition in these rats. That is, SHAM-Familiar subjects showed 

http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#f2
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the expected latent inhibition effect relative to the SHAM-Novel subjects. On the other hand, the 
ICX-Familiar rats drank maximal amounts of saccharin during each pre-exposure trial (and 
significantly more saccharin than SHAM-Familiar subjects on pre-exposure trial 1) and the ICX-
Novel rats developed a CTA at the same slow rate as the ICX-Familiar rats. The results also show 
that both groups of ICX rats acquired CTAs at a significantly slower rate than the SHAM-Familiar 
subjects. These findings were obtained using saccharin as the CS. It will, of course, be important 
to test other, qualitatively different, taste cues in the same experimental design in order to establish 
the generality of the present results. 

The present results are consistent with studies that have found a CTA acquisition deficit in ICX 
rats (e.g. Nerad et al., 1996; Roman et al., 2006) but conflict with those that have reported no 
deficits (e.g. Yamamoto et al., 1995; Sakai & Yamamoto, 1999). We believe that these different 
CTA results are not dependent upon the length of the interstimulus intervals (the former studies 
used CS–US delays of 10–20 min, whereas the latter studies used a nominal no-delay design), but 
are best explained in terms of the location and extent of the IC lesions. Kosar et al. (1986) identified 
the boundaries of the gustatory region of the IC as extending for ∼1.0 mm anterior and posterior 
to the intersection of the rhinal fissure and the middle cerebral artery (∼0.8 mm anterior to 
bregma). Thus, the gustatory region of the IC extends from approximately +1.8 mm to −0.2 mm 
AP. In the Sakai & Yamamoto (1999) study, the maximal area of common damage in all ICX rats 
was between +2.7 mm and +1.7 mm anterior to bregma, and in the Yamamoto et al. (1995) study, 
the representative IC lesions were centred at +1.8 mm AP. In both studies, then, the critical 
gustatory region would seem to have been less completely damaged than in the studies by Nerad 
et al. (1996) and Roman et al. (2006), and in the present report. 

The only lesion-induced deficit that was not expected in the present study concerns the difference 
between the two groups of ICX rats and the SHAM-Familiar subjects; our experimental hypothesis 
(that ICX rats treat novel taste stimuli as if they are familiar) anticipated that these three groups 
should acquire CTAs at the same rate. How is this disparity to be explained? Two dysfunctions, 
which concern lesion-induced disruptions of taste detection or stimulus intensity, can immediately 
be ruled out on the basis of the present results. First, if IC lesions rendered a rat completely ageusic, 
then taste aversion learning would be impossible. It is clear, then, that ICX rats were not blind to 
taste stimuli, as CTA acquisition was attenuated, but not prevented. The second dysfunction would 
mean that IC lesions reduce the perceived intensity of taste stimuli. Although this could readily 
explain a lesion-induced overconsumption of saccharin on the first pre-exposure trial (lower 
concentrations of saccharin evoke less neophobia than do higher concentrations), it would not 
mean that ICX-Novel rats would acquire the taste aversion as slowly as the ICX-Familiar subjects 
[latent inhibition occurs even with low concentrations of saccharin; for example, De La Casa & 
Lubow (2002) used 0.04% saccharin]. Finally, it might be noted that there is empirical evidence 
that IC lesions do not disrupt basic taste perception (Braun et al. 1982). 

One might, of course, suggest that the behavioural deficit during pre-exposure is the product of 
the disruption of a qualitatively different IC mechanism than the behavioural deficits found during 
conditioning. Furthermore, one might argue that each group of ICX animals displayed abnormal 
performance during the conditioning phase: impaired CTA acquisition in the ICX-Novel rats and 

http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b23
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b13
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b8
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b9
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b21
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b9
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b8
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b23
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b23
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b13
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b24
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b24
http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2007.05872.x/full#b25
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enhanced latent inhibition in the ICX-Familiar subjects. Does the pattern of behavioural deficits 
found during conditioning reflect the disruptions of two different IC mechanisms or can a single 
dysfunctional IC mechanism account for both deficits? That is, is the apparent enhanced latent 
inhibition effect in the ICX-Familiar rats better understood as impaired CTA acquisition (as shown 
in the ICX-Novel rats) rather than merely further retardation by stimulus pre-exposure? Thus, 
depending on one's interpretation of the conditioning data, it is possible to argue that IC lesions 
disrupted two or perhaps three mechanisms in the present study. 

It is not clear, however, that parsimony needs to be abandoned in order to explain the full pattern 
of deficits in ICX rats. Although the present latent inhibition design precludes a determination of 
the magnitude of the lesion-induced deficit on first exposure to saccharin, a recent CTA experiment 
from our laboratory, which employed the same deprivation schedule and saccharin concentration 
as the present study (Roman et al., 2006), found that ICX rats consumed twice as much saccharin 
on the first conditioning trial than the SHAM subjects (∼21.0 mL vs. ∼9.0 mL, respectively). 
Assuming this analysis to be valid, an alternative account of the present pattern of results may be 
entertained, an account that focuses on the performance of the SHAM-Familiar subjects, not that 
of the ICX rats. That is, perhaps the five pre-exposure trials were insufficient to fully familiarize 
SHAM subjects with saccharin to the level at which it was perceived by the ICX rats. In turn, the 
SHAM-Familiar subjects would be expected to acquire CTAs more rapidly than each group of 
ICX rats. 

This analysis has two virtues: it is readily testable and, if correct, the pattern of results in the ICX 
rats of the present study is entirely consistent with our experimental hypothesis that IC lesions 
disrupt CTA acquisition as a secondary consequence of an impairment in the detection of the 
novelty of taste stimuli. Taste neophobia (Barnett, 1963) refers to the fact that rats are reluctant to 
eat a novel food because of the unknown, and potentially toxic, postingestive consequences of 
consumption. However, in the absence of aversive gastrointestinal feedback, neophobia eventually 
dissipates following repeated exposures to the now familiar and safe food (Barnett, 1963; Domjan, 
1977; Corey, 1978). If our analysis of the present results is valid, then questions concerning the 
role of the IC in CTA need to be recast in terms of the role of the IC in taste neophobia. To our 
knowledge, however, there has been no published study that has systematically investigated the 
effects of IC lesions on taste neophobia. Such a study is currently underway in our laboratory, and 
seeks to evaluate not only the magnitude of the taste neophobia deficit but also the specificity of 
the deficit to the modality of taste. 

The results of the present experiment not only help to clarify the role of the IC in CTA, but also 
enhance our understanding of the neurological system underlying taste aversion learning. It has 
been shown that rats with parabrachial nucleus lesions are unable to learn CTAs [for reviews, see 
Reilly (1999, 2008)]. The parabrachial nucleus is a brainstem nucleus that projects to several 
forebrain structures, including the thalamus, lateral hypothalamus, amygdala, bed nucleus of the 
stria terminalis and IC. Other research has demonstrated that transecting all axons between the 
forebrain and brainstem also prevents the development of CTAs (Grill & Norgren, 1978). 
Together, these lines of evidence suggest that a parabrachial nucleus interaction with one or more 
forebrain structures is essential for the occurrence of normal CTA. Many lesion studies have been 
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conducted to test this analysis, but there appears to be little convincing evidence that any of the 
aforementioned nuclei are critical for CTA acquisition in manner comparable to the parabrachial 
nucleus (Roman et al., 2006). Indeed, to our knowledge, only the basolateral region of the 
amygdala (BLA) and IC show any significant involvement in CTA. In both cases, it should be 
noted, the deficit is retardation, not abolition of taste aversion learning. 

The present results bear a strong resemblance to the data obtained from rats with lesions of the 
BLA tested with the same latent inhibition procedure (St Andre & Reilly, 2007; Reilly & 
Bornovalova, 2005). In the experiment with BLA-lesioned rats, the SHAM-Familiar and BLA-
lesioned-Familiar groups acquired aversions at the same rate (that is, latent inhibition was 
demonstrated). As is typical, SHAM-Novel subjects rapidly developed aversions, but the BLA-
lesioned-Novel rats acquired aversions at an intermediate rate relative to the other three groups 
(given that the lesions in these rats were subtotal, it is possible that the behavioural impairment 
would have been more complete if the lesions were larger). These results support the view that the 
BLA and IC perform similar roles in CTA. Specifically, both structures are important for the 
accurate detection/recognition of taste novelty. 

That lesions of the IC and BLA have similar influences on CTA is hardly surprising, as the two 
areas are anatomically interconnected (Krettek & Price, 1977; Ottersen, 1982; Shi & Cassell, 
1998). However, similarities in function and anatomical connectivity do not guarantee redundancy. 
If these two areas did perform redundant functions, then lesions of either structure might not lead 
to meaningful behavioural deficits, because the other structure would be available to execute that 
behaviour. Rather, the similarities of deficits consequent to lesions of the BLA and IC suggest that 
the two structures are functionally interdependent. This analysis offers direction to future studies 
that might profitably examine the effects of combined BLA and IC lesions or asymmetrical lesions 
of the two structures on taste neophobia and CTA. In this context, it might be noted that Yamamoto 
(1993) found that dual lesions of the IC and amygdala interrupt CTA acquisition to a greater degree 
than lesions of either structure alone. Also, Bielavska & Roldan (1996) found that contralateral 
tetrodotoxin inactivations of the IC and amygdala interrupted CTA more than ipsilateral 
inactivations. Repeating these studies with lesions limited to the BLA rather than multiple 
amygdala subnuclei, and utilizing multiple conditioning trials to more carefully assay the nature 
of the deficit, would benefit our understanding of the interplay between these two structures. 

The results of the present latent inhibition study support the experimental hypothesis that the IC is 
essential for the detection/recognition of taste novelty. ICX rats treat a novel taste stimulus as if it 
is familiar, and consequently CTA is retarded because of a latent inhibition-like effect. By this 
analysis, the IC has an important but nonessential role in the neural system underlying taste 
aversion learning. 
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Abbreviations 

BLA 

basolateral amygdala 

CS 

conditioned stimulus 

CTA 

conditioned taste aversion 

IC 

insular cortex 

ICX 

insular cortex-lesioned 

US 

unconditioned stimulus. 
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