538,205 research outputs found
Evolving force balance during incipient subduction
Nearly half of all active subduction zones initiated during the Cenozoic. All subduction zones associated with active back arc extension have initiated since the Eocene, hinting that back arc extension may be intimately associated with an interval (several tens of Myr) following subduction initiation. That such a large proportion of subduction zones are young indicates that subduction initiation is a continuous process in which the net resisting force associated with forming a new subduction zone can be overcome during the normal evolution of plates. Subduction initiation is known to have occurred in a variety of tectonic settings: old fracture zones, transform faults, and extinct spreading centers and through polarity reversal behind active subduction zones. Although occurring within different tectonic settings, four known subduction initiation events (Izu-Bonin-Mariana (IBM) along a fracture zone, Tonga-Kermadec along an extinct subduction boundary, New Hebrides within a back arc, and Puysegur-Fiordland along a spreading center) were typified by rapid uplift within the forearc followed by sudden subsidence. Other constraints corroborate the compressive nature of IBM and Tonga-Kermadec during initiation. Using an explicit finite element method within a two-dimensional domain, we explore the evolving force balance during initiation in which elastic flexure, viscous flow, plastic failure, and heat transport are all considered. In order to tie theory with observation, known tectonic settings of subduction initiation are used as initial and boundary conditions. We systematically explore incipient compression of a homogeneous plate, a former spreading center, and a fracture zone. The force balance is typified by a rapid growth in resisting force as the plate begins bending, reaching a maximum value dependent on plate thickness, but typically ranging from 2 to 3 × 1012 N/m for cases that become self-sustaining. This is followed by a drop in stress once a shear zone extends through the plate. The formation of a throughgoing fault is associated with rapid uplift on the hanging wall and subsidence on the footwall. Cumulative convergence, not the rate of convergence, is the dominant control on the force balance. Viscous tractions influence the force balance only if the viscosity of the asthenosphere is >1020 Pa s, and then only after plate failure. Following plate failure, buoyancy of the oceanic crust leads to a linear increase with crustal thickness in the work required to initiate subduction. The total work done is also influenced by the rate of lithospheric failure. A self-sustaining subduction zone does not form from a homogeneous plate. A ridge placed under compression localizes subduction initiation, but the resisting ridge push force is not nearly as large as the force required to bend the subducting plate. The large initial bending resistance can be entirely eliminated in ridge models, explaining the propensity for new subduction zones to form through polarity reversals. A fracture zone (FZ) placed in compression leads to subduction initiation with rapid extension of the overriding plate. A FZ must be underthrust by the older plate for ~100–150 km before a transition from forced to self-sustaining states is reached. In FZ models the change in force during transition is reflected by a shift from forearc uplift to subsidence. Subduction initiation is followed by trench retreat and back arc extension. Moderate resisting forces associated with modeled subduction initiation are consistent with the observed youth of Pacific subduction zones. The models provide an explanation for the compressive state of western Pacific margins before and during subduction initiation, including IBM and Tonga-Kermadec in the Eocene, and the association of active back arcs with young subduction zones. On the basis of our dynamic models and the relative poles of rotation between Pacific and Australia during the Eocene, we predict that the northern segment of the Tonga-Kermadec convergent margin would have initiated earlier with a progressive southern migration of the transition between forced and self-sustaining states
Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression
Self-stresses and Crack Formation by Particle Swelling in Cohesive Granular Media
We present a molecular dynamics study of force patterns, tensile strength and
crack formation in a cohesive granular model where the particles are subjected
to swelling or shrinkage gradients. Non-uniform particle size change generates
self-equilibrated forces that lead to crack initiation as soon as strongest
tensile contacts begin to fail. We find that the coarse-grained stresses are
correctly predicted by an elastic model that incorporates particle size change
as metric evolution. The tensile strength is found to be well below the
theoretical strength as a result of inhomogeneous force transmission in
granular media. The cracks propagate either inward from the edge upon shrinkage
and outward from the center upon swelling
Physical mechanism of anisotropic sensitivity in pentaerythritol tetranitrate from compressive-shear reaction dynamics simulations
We propose computational protocol (compressive shear reactive dynamics) utilizing the ReaxFF reactive force field to study chemical initiation under combined shear and compressive load. We apply it to predict the anisotropic initiation sensitivity observed experimentally for shocked pentaerythritol tetranitrate single crystals. For crystal directions known to be sensitive we find large stress overshoots and fast temperature increase that result in early bond-breaking processes whereas insensitive directions exhibit small stress overshoot, lower temperature increase, and little bond dissociation. These simulations confirm the model of steric hindrance to shear and capture the thermochemical processes dominating the phenomena of shear-induced chemical initiation
A study of the vibration of a horizontal U-bend subjected to an internal upwards flowing air-water mixture
U-bends are a common geometry in heat exchangers. In this paper, a U-bend in the vertical plane connected to horizontal straight pipes is considered. An initially stratified water/air flow moves upwards against gravity. The aim of this research is to investigate the internal flow profile and resulting force when the U-bend is subjected to a stratified air-water flow at the inlet. This is done numerically, i.e. by solving the unsteady Reynolds-averaged Navier-Stokes equations. For low mass flow rates, large gas bubbles are naturally formed at the entrance of the bend. The transient force on the tube allows to determine precisely the time instants of bubble initiation and thus to quantify the bubble frequency. Firstly, the tube is assumed to be rigid and the dependence of force oscillation on the inlet conditions is investigated. Secondly, the influence of the viscosity, wall wetting and the mass flow rate is analyzed. Finally, a fluid-structure interaction calculation is performed in order to quantify the vibration characteristics of the tube
Helices 2 and 3 are the initiation sites in the PrPc -> PrPsc transition
It is established that prion protein is the sole causative agent in a number
of diseases in humans and animals. However, the nature of conformational
changes that the normal cellular form PrPC undergoes in the conversion process
to a self-replicating state is still not fully understood. The ordered
C-terminus of PrPC proteins has three helices (H1, H2, and H3). Here, we use
the Statistical Coupling Analysis (SCA) to infer co-variations at various
locations using a family of evolutionarily related sequences, and the response
of mouse and human PrPCs to mechanical force to decipher the initiation sites
for transition from PrPC to an aggregation prone PrP* state. The sequence-based
SCA predicts that the clustered residues in non-mammals are localized in the
stable core (near H1) of PrPC whereas in mammalian PrPC they are localized in
the frustrated helices H2 and H3 where most of the pathogenic mutations are
found. Force-extension curves and free energy profiles as a function of
extension of mouse and human PrPC in the absence of disulfide (SS) bond between
residues Cys179 and Cys214, generated by applying mechanical force to the ends
of the molecule, show a sequence of unfolding events starting first with
rupture of H2 and H3. This is followed by disruption of structure in two
strands. Helix H1, stabilized by three salt-bridges, resists substantial force
before unfolding. Force extension profiles and the dynamics of rupture of
tertiary contacts also show that even in the presence of SS bond the
instabilities in most of H3 and parts of H2 still determine the propensity to
form the PrP* state. In mouse PrPC with SS bond there are about ten residues
that retain their order even at high forces
Crumpling of a stiff tethered membrane
first-principles numerical simulation model for crumpling of a stiff tethered
membrane is introduced. In our model membranes, wrinkles, ridge formation,
ridge collapse, as well as the initiation of stiffness divergence, are
observed. The ratio of the amplitude and wave length of the wrinkles, and the
scaling exponent of the stiffness divergence, are consistent with both theory
and experiment. We observe that close to the stiffness divergence there appears
a crossover beyond which the elastic behavior of a tethered membrane becomes
similar to that of dry granular media. This suggests that ridge formation in
membranes and force-chain network formation in granular packings are different
manifestations of a single phenomenon.Comment: For full resolution figures, please send us an emai
- …
