15,739 research outputs found

    Monitoring-Oriented Programming: A Tool-Supported Methodology for Higher Quality Object-Oriented Software

    Get PDF
    This paper presents a tool-supported methodological paradigm for object-oriented software development, called monitoring-oriented programming and abbreviated MOP, in which runtime monitoring is a basic software design principle. The general idea underlying MOP is that software developers insert specifications in their code via annotations. Actual monitoring code is automatically synthesized from these annotations before compilation and integrated at appropriate places in the program, according to user-defined configuration attributes. This way, the specification is checked at runtime against the implementation. Moreover, violations and/or validations of specifications can trigger user-defined code at any points in the program, in particular recovery code, outputting or sending messages, or raising exceptions. The MOP paradigm does not promote or enforce any specific formalism to specify requirements: it allows the users to plug-in their favorite or domain-specific specification formalisms via logic plug-in modules. There are two major technical challenges that MOP supporting tools unavoidably face: monitor synthesis and monitor integration. The former is heavily dependent on the specification formalism and comes as part of the corresponding logic plug-in, while the latter is uniform for all specification formalisms and depends only on the target programming language. An experimental prototype tool, called Java-MOP, is also discussed, which currently supports most but not all of the desired MOP features. MOP aims at reducing the gap between formal specification and implementation, by integrating the two and allowing them together to form a system

    The ERA of FOLE: Superstructure

    Full text link
    This paper discusses the representation of ontologies in the first-order logical environment FOLE (Kent 2013). An ontology defines the primitives with which to model the knowledge resources for a community of discourse (Gruber 2009). These primitives, consisting of classes, relationships and properties, are represented by the ERA (entity-relationship-attribute) data model (Chen 1976). An ontology uses formal axioms to constrain the interpretation of these primitives. In short, an ontology specifies a logical theory. This paper is the second in a series of three papers that provide a rigorous mathematical representation for the ERA data model in particular, and ontologies in general, within the first-order logical environment FOLE. The first two papers show how FOLE represents the formalism and semantics of (many-sorted) first-order logic in a classification form corresponding to ideas discussed in the Information Flow Framework (IFF). In particular, the first paper (Kent 2015) provided a "foundation" that connected elements of the ERA data model with components of the first-order logical environment FOLE, and this second paper provides a "superstructure" that extends FOLE to the formalisms of first-order logic. The third paper will define an "interpretation" of FOLE in terms of the transformational passage, first described in (Kent 2013), from the classification form of first-order logic to an equivalent interpretation form, thereby defining the formalism and semantics of first-order logical/relational database systems (Kent 2011). The FOLE representation follows a conceptual structures approach, that is completely compatible with Formal Concept Analysis (Ganter and Wille 1999) and Information Flow (Barwise and Seligman 1997)

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    Combined FO rewritability for conjunctive query answering in DL-Lite

    Get PDF
    Standard description logic (DL) reasoning services such as satisfiability and subsumption mainly aim to support TBox design. When the design stage is over and the TBox is used in an actual application, it is usually combined with instance data stored in an ABox, and therefore query answering becomes the most importan
    • …
    corecore