1,306,842 research outputs found

    Integrity Constraints Revisited: From Exact to Approximate Implication

    Full text link
    Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction

    Integrity Constraints Revisited: From Exact to Approximate Implication

    Get PDF
    Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction

    The lattice of varieties of implication semigroups

    Full text link
    In 2012, the second author introduced and examined a new type of algebras as a generalization of De Morgan algebras. These algebras are of type (2,0) with one binary and one nullary operation satisfying two certain specific identities. Such algebras are called implication zroupoids. They invesigated in a number of articles by the second author and J.M.Cornejo. In these articles several varieties of implication zroupoids satisfying the associative law appeared. Implication zroupoids satisfying the associative law are called implication semigroups. Here we completely describe the lattice of all varieties of implication semigroups. It turns out that this lattice is non-modular and consists of 16 elements.Comment: Compared with the previous version, we rewrite Section 3 and add Appendixes A and

    A cognitive view of relevant implication

    Get PDF
    Relevant logics provide an alternative to classical implication that is capable of accounting for the relationship between the antecedent and the consequence of a valid implication. Relevant implication is usually explained in terms of information required to assess a proposition. By doing so, relevant implication introduces a number of cognitively relevant aspects in the denition of logical operators. In this paper, we aim to take a closer look at the cognitive feature of relevant implication. For this purpose, we develop a cognitively-oriented interpretation of the semantics of relevant logics. In particular, we provide an interpretation of Routley-Meyer semantics in terms of conceptual spaces and we show that it meets the constraints of the algebraic semantics of relevant logic

    On Independence Atoms and Keys

    Full text link
    Uniqueness and independence are two fundamental properties of data. Their enforcement in database systems can lead to higher quality data, faster data service response time, better data-driven decision making and knowledge discovery from data. The applications can be effectively unlocked by providing efficient solutions to the underlying implication problems of keys and independence atoms. Indeed, for the sole class of keys and the sole class of independence atoms the associated finite and general implication problems coincide and enjoy simple axiomatizations. However, the situation changes drastically when keys and independence atoms are combined. We show that the finite and the general implication problems are already different for keys and unary independence atoms. Furthermore, we establish a finite axiomatization for the general implication problem, and show that the finite implication problem does not enjoy a k-ary axiomatization for any k

    On the Usability of Probably Approximately Correct Implication Bases

    Full text link
    We revisit the notion of probably approximately correct implication bases from the literature and present a first formulation in the language of formal concept analysis, with the goal to investigate whether such bases represent a suitable substitute for exact implication bases in practical use-cases. To this end, we quantitatively examine the behavior of probably approximately correct implication bases on artificial and real-world data sets and compare their precision and recall with respect to their corresponding exact implication bases. Using a small example, we also provide qualitative insight that implications from probably approximately correct bases can still represent meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph

    Predicativity and parametric polymorphism of Brouwerian implication

    Get PDF
    A common objection to the definition of intuitionistic implication in the Proof Interpretation is that it is impredicative. I discuss the history of that objection, argue that in Brouwer's writings predicativity of implication is ensured through parametric polymorphism of functions on species, and compare this construal with the alternative approaches to predicative implication of Goodman, Dummett, Prawitz, and Martin-L\"of.Comment: Added further references (Pistone, Poincar\'e, Tabatabai, Van Atten
    corecore