367,913 research outputs found

    UNSUPERVISED CONVOLUTIONAL NEURAL NETWORKS FOR MOTION ESTIMATION

    Get PDF
    We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.Traditional methods for motion estimation estimate the motion field F between a pair of images as the one that minimizes a predesigned cost function. In this paper, we propose a direct method and train a Convolutional Neural Network (CNN) that when, at test time, is given a pair of images as input it produces a dense motion field F at its output layer. In the absence of large datasets with ground truth motion that would allow classical supervised training, we propose to train the network in an unsupervised manner. The proposed cost function that is optimized during training, is based on the classical optical flow constraint. The latter is differentiable with respect to the motion field and, therefore, allows backpropagation of the error to previous layers of the network. Our method is tested on both synthetic and real image sequences and performs similarly to the state-of-the-art methods

    Generalized Inpainting Method for Hyperspectral Image Acquisition

    Full text link
    A recently designed hyperspectral imaging device enables multiplexed acquisition of an entire data volume in a single snapshot thanks to monolithically-integrated spectral filters. Such an agile imaging technique comes at the cost of a reduced spatial resolution and the need for a demosaicing procedure on its interleaved data. In this work, we address both issues and propose an approach inspired by recent developments in compressed sensing and analysis sparse models. We formulate our superresolution and demosaicing task as a 3-D generalized inpainting problem. Interestingly, the target spatial resolution can be adjusted for mitigating the compression level of our sensing. The reconstruction procedure uses a fast greedy method called Pseudo-inverse IHT. We also show on simulations that a random arrangement of the spectral filters on the sensor is preferable to regular mosaic layout as it improves the quality of the reconstruction. The efficiency of our technique is demonstrated through numerical experiments on both synthetic and real data as acquired by the snapshot imager.Comment: Keywords: Hyperspectral, inpainting, iterative hard thresholding, sparse models, CMOS, Fabry-P\'ero

    Depth coding using depth discontinuity prediction and in-loop boundary reconstruction filtering

    Get PDF
    This paper presents a depth coding strategy that employs K-means clustering to segment the sequence of depth images into K clusters. The resulting clusters are losslessly compressed and transmitted as supplemental enhancement information to aid the decoder in predicting macroblocks containing depth discontinuities. This method further employs an in-loop boundary reconstruction filter to reduce distortions at the edges. The proposed algorithm was integrated within both H.264/AVC and H.264/MVC video coding standards. Simulation results demonstrate that the proposed scheme outperforms the state of the art depth coding schemes, where rendered Peak Signal to Noise Ratio (PSNR) gains between 0.1 dB and 0.5 dB were observed.peer-reviewe

    Improved rate-adaptive codes for distributed video coding

    Get PDF
    The research work is partially funded by the STEPS Malta.This scholarship is partly financed by the European Union - European Social Fund (ESF 1.25).Distributed Video Coding (DVC) is a coding paradigm which shifts the major computational intensive tasks from the encoder to the decoder. Temporal correlation is exploited at the decoder by predicting the Wyner-Ziv (WZ) frames from the adjacent key frames. Compression is then achieved by transmitting just the parity information required to correct the predicted frame and recover the original frame. This paper proposes an algorithm which identifies most of the unreliable bits in the predicted bit planes, by considering the discrepancies in the previously decoded bit plane. The design of the used Low Density Parity Check (LDPC) codes is then biased to provide better protection to the unreliable bits. Simulation results show that, for the same target quality, the proposed scheme can reduce the WZ bit rates by up to 7% compared to traditional schemes.peer-reviewe

    Adaptive rounding operator for efficient Wyner-Ziv video coding

    Get PDF
    The research work disclosed in this publication is partially funded by the Strategic Educational Pathways Scholarship Scheme (Malta). The scholarship is part-financed by the European Union – European Social Fund. (ESF 1.25).The Distributed Video Coding (DVC) paradigm can theoretically reach the same coding efficiencies of predictive block-based video coding schemes, like H.264/AVC. However, current DVC architectures are still far from this ideal performance. This is mainly attributed to inaccuracies in the Side Information (SI) predicted at the decoder. The work in this paper presents a coding scheme which tries to avoid mismatch in the SI predictions caused by small variations in light intensity. Using the appropriate rounding operator for every coefficient, the proposed method significantly reduces the correlation noise between the Wyner-Ziv (WZ) frame and the corresponding SI, achieving higher coding efficiencies. Experimental results demonstrate that the average Peak Signal-to-Noise Ratio (PSNR) is improved by up to 0.56dB relative to the DISCOVER codec.peer-reviewe

    Improved Wyner-Ziv video coding efficiency using bit plane prediction

    Get PDF
    The research work is partially funded by STEPS-Malta and partially by the European Union - ESF 1.25.Distributed Video Coding (DVC) is a coding paradigm where video statistics are exploited, partially or totally, at the decoder. The performance of such a codec depends on the accuracy of the soft-input information estimated at the decoder, which is affected by the quality of the side information (SI) and the dependency model. This paper studies the discrepancies between the bit planes of the Wyner-Ziv (WZ) frames and the corresponding bit planes of the SI. The relationship between these discrepancies is then exploited to predict the locations where the bit plane of the SI is expected to differ from that of the original WZ frame. This information is then used to derive more accurate soft-input values that achieve better compression efficiencies. Simulation results demonstrate that a WZ bit-rate reduction of 9.4% is achieved for a given video quality.peer-reviewe

    Unsupervised delineation of the vessel tree in retinal fundus images

    Get PDF
    Retinal imaging has gained particular popularity as it provides an opportunity to diagnose various medical pathologies in a non-invasive way. One of the basic and very important steps in the analysis of such images is the delineation of the vessel tree from the background. Such segmentation facilitates the investigation of the morphological characteristics of the vessel tree and the analysis of any lesions in the background, which are both indicators for various pathologies. We propose a novel method called B-COSFIRE for the delineation of the vessel tree. It is based on the classic COSFIRE approach, which is a trainable nonlinear filtering method. The responses of a B-COSFIRE filter is achieved by combining the responses of difference-of-Gaussians filters whose areas of support are determined in an automatic configuration step. We configure two types of B-COSFIRE filters, one that responds selectively along vessels and another that is selective to vessel endings. The segmentation of the vessel tree is achieved by summing up the response maps of both types of filters followed by thresholding.We demonstrate high effectiveness of the proposed approach by performing experiments on four public data sets, namely DRIVE, STARE, CHASE DB1 and HRF. The delineation approach that we propose also has lower time complexity than existing methods.peer-reviewe

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation
    • …
    corecore