398,376 research outputs found
CLD-shaped Brushstrokes in Non-Photorealistic Rendering
Rendering techniques based on a random grid can be improved by adapting
brushstrokes to the shape of different areas of the original picture. In this
paper, the concept of Coherence Length Diagram is applied to determine the
adaptive brushstrokes, in order to simulate an impressionist painting. Some
examples are provided to instance the proposed algorithm.Comment: Keywords: Image processing, Non-photorealistic processing,
Image-based rendering Coherence Length Diagra
Selective rendering for efficient ray traced stereoscopic images
Depth-related visual effects are a key feature of many virtual environments. In stereo-based systems, the depth effect can be produced by delivering frames of disparate image pairs, while in monocular environments, the viewer has to extract this depth information from a single image by examining details such as perspective and shadows. This paper investigates via a number of psychophysical experiments, whether we can reduce computational effort and still achieve perceptually high-quality rendering for stereo imagery. We examined selectively rendering the image pairs by exploiting the fusing capability and depth perception underlying human stereo vision. In ray-tracing-based global illumination systems, a higher image resolution introduces more computation to the rendering process since many more rays need to be traced. We first investigated whether we could utilise the human binocular fusing ability and significantly reduce the resolution of one of the image pairs and yet retain a high perceptual quality under stereo viewing condition. Secondly, we evaluated subjects' performance on a specific visual task that required accurate depth perception. We found that subjects required far fewer rendered depth cues in the stereo viewing environment to perform the task well. Avoiding rendering these detailed cues saved significant computational time. In fact it was possible to achieve a better task performance in the stereo viewing condition at a combined rendering time for the image pairs less than that required for the single monocular image. The outcome of this study suggests that we can produce more efficient stereo images for depth-related visual tasks by selective rendering and exploiting inherent features of human stereo vision
Interactive Vegetation Rendering with Slicing and Blending
Detailed and interactive 3D rendering of vegetation is one of the challenges of traditional polygon-oriented computer graphics, due to large geometric complexity even of simple plants. In this paper we introduce a simplified image-based rendering approach based solely on alpha-blended textured polygons. The simplification is based on the limitations of human perception of complex geometry. Our approach renders dozens of detailed trees in real-time with off-the-shelf hardware, while providing significantly improved image quality over existing real-time techniques. The method is based on using ordinary mesh-based rendering for the solid parts of a tree, its trunk and limbs. The sparse parts of a tree, its twigs and leaves, are instead represented with a set of slices, an image-based representation. A slice is a planar layer, represented with an ordinary alpha or color-keyed texture; a set of parallel slices is a slicing. Rendering from an arbitrary viewpoint in a 360 degree circle around the center of a tree is achieved by blending between the nearest two slicings. In our implementation, only 6 slicings with 5 slices each are sufficient to visualize a tree for a moving or stationary observer with the perceptually similar quality as the original model
Image-based rendering and synthesis
Multiview imaging (MVI) is currently the focus of some research as it has a wide range of applications and opens up research in other topics and applications, including virtual view synthesis for three-dimensional (3D) television (3DTV) and entertainment. However, a large amount of storage is needed by multiview systems and are difficult to construct. The concept behind allowing 3D scenes and objects to be visualized in a realistic way without full 3D model reconstruction is image-based rendering (IBR). Using images as the primary substrate, IBR has many potential applications including for video games, virtual travel and others. The technique creates new views of scenes which are reconstructed from a collection of densely sampled images or videos. The IBR concept has different classification such as knowing 3D models and the lighting conditions and be rendered using conventional graphic techniques. Another is lightfield or lumigraph rendering which depends on dense sampling with no or very little geometry for rendering without recovering the exact 3D-models.published_or_final_versio
A survey of real-time crowd rendering
In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft
Image Sampling with Quasicrystals
We investigate the use of quasicrystals in image sampling. Quasicrystals
produce space-filling, non-periodic point sets that are uniformly discrete and
relatively dense, thereby ensuring the sample sites are evenly spread out
throughout the sampled image. Their self-similar structure can be attractive
for creating sampling patterns endowed with a decorative symmetry. We present a
brief general overview of the algebraic theory of cut-and-project quasicrystals
based on the geometry of the golden ratio. To assess the practical utility of
quasicrystal sampling, we evaluate the visual effects of a variety of
non-adaptive image sampling strategies on photorealistic image reconstruction
and non-photorealistic image rendering used in multiresolution image
representations. For computer visualization of point sets used in image
sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary
materials, please visit at
http://www.Eyemaginary.com/Portfolio/Publications.htm
Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction
The ultimate goal of many image-based modeling systems is to render
photo-realistic novel views of a scene without visible artifacts. Existing
evaluation metrics and benchmarks focus mainly on the geometric accuracy of the
reconstructed model, which is, however, a poor predictor of visual accuracy.
Furthermore, using only geometric accuracy by itself does not allow evaluating
systems that either lack a geometric scene representation or utilize coarse
proxy geometry. Examples include light field or image-based rendering systems.
We propose a unified evaluation approach based on novel view prediction error
that is able to analyze the visual quality of any method that can render novel
views from input images. One of the key advantages of this approach is that it
does not require ground truth geometry. This dramatically simplifies the
creation of test datasets and benchmarks. It also allows us to evaluate the
quality of an unknown scene during the acquisition and reconstruction process,
which is useful for acquisition planning. We evaluate our approach on a range
of methods including standard geometry-plus-texture pipelines as well as
image-based rendering techniques, compare it to existing geometry-based
benchmarks, and demonstrate its utility for a range of use cases.Comment: 10 pages, 12 figures, paper was submitted to ACM Transactions on
Graphics for revie
CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering
Intrinsic image decomposition is a challenging, long-standing computer vision
problem for which ground truth data is very difficult to acquire. We explore
the use of synthetic data for training CNN-based intrinsic image decomposition
models, then applying these learned models to real-world images. To that end,
we present \ICG, a new, large-scale dataset of physically-based rendered images
of scenes with full ground truth decompositions. The rendering process we use
is carefully designed to yield high-quality, realistic images, which we find to
be crucial for this problem domain. We also propose a new end-to-end training
method that learns better decompositions by leveraging \ICG, and optionally IIW
and SAW, two recent datasets of sparse annotations on real-world images.
Surprisingly, we find that a decomposition network trained solely on our
synthetic data outperforms the state-of-the-art on both IIW and SAW, and
performance improves even further when IIW and SAW data is added during
training. Our work demonstrates the suprising effectiveness of
carefully-rendered synthetic data for the intrinsic images task.Comment: Paper for 'CGIntrinsics: Better Intrinsic Image Decomposition through
Physically-Based Rendering' published in ECCV, 201
- …
