75,760 research outputs found

    Properties of magnetron hydroxyapatite coatings deposited on oxidized substrates

    Get PDF
    Hydroxyapatite (HA) coating were formed on oxidized niobium surfaces by the highfrequency magnetron sputtering method using hydroxyapatite and tricalcium phosphate targets. The structure, substructure and mechanical properties of the Nb–Nb2O5–HA system were investigated by X-ray diffraction, atomic force microscopy and nanoindentation and the stress state was assessed. The synthesized hydroxyapatite film had the following characteristics: thermal expansion coefficient 10–5 K–1; modulus of elasticity 120 GPa; adhesive strength not less than 0.45 kg/mm2; density 2900 kg/m3. The stress magnitude in the metal oxide substrate was from 11 to 14 MPa after hydroxyapatite film deposition

    Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides

    Get PDF
    Surface modifications are usually performed on titanium alloys to improve osteo-integration and surface bioactivity. Modifications such as alkaline and acid etching, or coating with bioactive materials such as hydroxyapatite, have previously been demonstrated. The aim of this work is to develop a peptide with combined titanium oxide and hydroxyapatite binders in order to achieve a biomimetic hydroxyapatite coating on titanium surfaces. The technology would also be applicable for the functionalisation of titanium and hydroxyapatite surfaces for selective protein adsorption, conjugation of antimicrobial peptides, and adsorption of specialised drugs for drug delivery. In this work, functionalisation of Ti6Al4V and hydroxyapatite surfaces was achieved using combined titanium-hydroxyapatite (Ti-Hap) peptides based on titanium binder (RKLPDA) and hydroxyapatite binder (EEEEEEEE) peptides. Homogeneous peptide coatings on Ti6Al4V surfaces were obtained after surface chemical treatments with a 30 wt % aqueous solution of H2O2 for 24 and 48 hours. The treated titanium surfaces presented an average roughness of Sa=197 nm (24 h) and Sa=128 nm (48 h); an untreated mirror polished sample exhibited an Sa of 13 nm. The advancing water contact angle of the titanium oxide layer after 1 hour of exposure to 30 wt % aqueous solution of H2O2 was around 65°, decreasing gradually with time until it reached 35° after a 48 hour exposure, suggesting that the surface hydrophilicity increased over etching time. The presence of a lysine (L) amino acid in the sequence of the titanium binder resulted in fluorescence intensity roughly 16 % higher compared with the arginine (R) amino acid analogue and therefore the lysine containing titanium binder was used in this work. The Ti-Hap peptide KKLPDAEEEEEEEE (Ti-Hap1) was not adsorbed by the treated Ti6Al4V surfaces and therefore was modified. The modifications involved the inclusion of a glycine spacer between the binding terminals (Ti-Hap2) and the addition of a second titanium binder (KKLPDA) (Ti-Hap3 and Ti-Hap4). The Ti-Hap peptide aptamer which exhibited the strongest intensity after the titanium dip coating was KKLPDAKKLPDAEEEEEEEE (Ti-Hap4). On the other hand, hydroxyapatite surfaces, exhibiting an average roughness of Sa=1.42 ¾m, showed a higher fluorescence for all peptides compared with titanium surfaces

    Enamel remineralization and repair results of Biomimetic Hydroxyapatite toothpaste on deciduous teeth: an effective option to fluoride toothpaste

    Get PDF
    Background: Dental caries is a recognized worldwide public health problem. Despite being one of the most efective strategies against dental caries, the excessive use of fuorine may result in a potential risk of developing dental fuorosis especially in children under age of six. The purpose of this work is to analyze a fuorine-free toothpaste containing Biomimetic Hydroxyapatite to assess enamel re-mineralizing and repairing properties. Results: The study was performed in vitro and in vivo, comparing the hydroxyapatite toothpaste with two others toothpaste containing diferent fuorine concentrations. The coating efect of the micro-structured Hydroxyapatite nanoparticles reintegrates the enamel with a biomimetic flm reproducing the structure and the morphology of the biologic Hydroxyapatite of the enamel. As demonstrated, the coating is due to the deposit of a new layer of apatite, which presents fewer particles than the natural enamel, not based on the chemical—physical changes occurring in fuorinated toothpastes. Moreover, it shows resistance to brushing as a consequence of chemical bonds between the synthetic and natural crystals of the enamel. Conclusions: The use of Biomimetic Hydroxyapatite toothpastes has proven to be a valuable prevention measure against dental caries in primary dentition since it prevents the risk of fuorosis

    Hydroxyapatite promotes superior adhesion and proliferation of telomerase transformed keratocytes in comparison with inert plastic skirt materials used in leading contemporary keratoprostheses

    Get PDF
    Aim: Published clinical series suggest the osteoodontokeratoprosthesis (OOKP) may have a lower extrusion rate than current synthetic keratoprostheses. The OOKP is anchored in the eye wall by autologous tooth. The authors’ aim was to compare adhesion, proliferation, and morphology for telomerase transformed keratocytes seeded on calcium hydroxyapatite (the principal mineral constituent of tooth) and materials used in the anchoring elements of commercially available synthetic keratoprostheses. Methods: Test materials were hydroxyapatite, polytetrafluoroethylene (PTFE), polyhydroxyethyl methacrylate (HEMA), and glass (control). Cell adhesion and viability were quantified at 4 hours, 24 hours, and 1 week using a calcein-AM/EthD-1 viability/cytotoxicity assay. Focal contact expression and cytoskeletal organisation were studied at 24 hours by confocal microscopy with immunoflourescent labelling. Further studies of cell morphology were performed using light and scanning electron microscopy. Results: Live cell counts were significantly greater on hydroxyapatite surfaces at each time point (p<0.04). Dead cell counts were significantly higher for PTFE at 7 days (p<0.002). Β1 integrin expression was highest on hydroxyapatite. Adhesion structures were well expressed in flat, spread out keratocytes on both HA and glass. Keratocytes tended to be thinner and spindle shaped on PTFE. The relatively few keratocytes visible on HEMA test surfaces were rounded and poorly adherent. Conclusions: Keratocyte adhesion, spreading, and viability on hydroxyapatite test surfaces is superior to that seen on PTFE and HEMA. Improving the initial cell adhesion environment in the skirt element of keratoprostheses may enhance tissue integration and reduce device failure rates

    Effect of fish oil on lipopolysaccharide-induced hydroxyapatite loss in rat alveolar bone: A Preliminary Study

    Get PDF
    Dietary fish oil has been shown to inhibit bone resorption and, therefore, the aim of the present study was to test the hypothesis that fish oil alters lipopolysaccharide (LPS)-induced hydroxyapatite loss in rat alveolar bone. Rats were divided into four groups. The animals injected with saline or Escherichia coli-derived LPS into the maxillary alveolar mucosa on the buccoapical site of the molar region daily for 8 days were served as a negative or positive control, respectively. Other groups of animals were injected with LPS and orally treated with fish oil at the same day with or after LPS injection. The results of the present study showed that the hydroxyapatite contents of alveolar bone in rats treated with fish oil at the same day with or before LPS injection were significantly higher than those in rats injected with LPS alone, but still lower than those in untreated animals. Therefore, the present study suggests that oral treatment with fish oil may reduce LPS-induced hydroxyapatite loss in rat alveolar bon

    Bioactive ceramic-reinforced composites for bone augmentation

    Get PDF
    Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the ‘second-generation’ biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed
    • …
    corecore