1,400,397 research outputs found

    Hydrogen at the rooftop: Compact CPV-hydrogen system to convert sunlight to hydrogen

    Get PDF
    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWhe/kgH2 has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the syste

    Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains

    Full text link
    Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using the ab initio coupled-cluster singles and doubles (CCSD) correlation method. The correlation contribution to the binding energy is decomposed in terms of nonadditive many-body interactions between the monomers in the chains, the so-called energy increments. Van der Waals constants for the two-body dispersion interaction between distant monomers in the infinite chains are extracted from this decomposition. They allow a partitioning of the correlation contribution to the binding energy into short- and long-range terms. This finding affords a significant reduction in the computational effort of ab initio calculations for solids as only the short-range part requires a sophisticated treatment whereas the long-range part can be summed immediately to infinite distances.Comment: 9 pages, 4 figures, 3 tables, RevTeX4, corrected typo

    The impact of hydrogen on the ductility loss of bainitic Fe–C alloys

    Get PDF
    The influence of hydrogen on the mechanical properties of generic lab-cast Fe-C bainitic alloys is studied by tensile tests on notched samples. The bainitic microstructure is induced in a 0.2% C and 0.4% C Fe-C alloy by an appropriate heat treatment. The hydrogen embrittlement susceptibility is evaluated by mechanical tests on both in situ hydrogen pre-charged and uncharged specimens. The observed ductility loss of the materials is correlated with the present amount of hydrogen and the hydrogen diffusion coefficient. In addition to the correlation between the amount of hydrogen and the hydrogen-induced ductility loss, the hydrogen diffusion during the tensile test, quantified by the hydrogen diffusion distance during the test, appears to be of major importance as well

    Economic analysis and optimization for bio-hydrogen production from oil palm waste via steam gasification

    Get PDF
    Biomass steam gasification with in-situ carbon dioxide capture using CaO exhibits good prospects for the production of hydrogen rich gas. In Malaysia, due to abundance of palm waste, it is a good candidate to be used as a feedstock for hydrogen production. The present work focuses on the mathematical modeling of detailed economic analysis and cost minimization of the flowsheet design for hydrogen production from palm waste using MATLAB. The influence of the operating parameters on the economics is performed. It is predicted that hydrogen cost decreasing by increasing both temperature and steam/biomass ratio. Meanwhile, the hydrogen cost increases when increasing sorbent/biomass ratio. Cost minimization solves to give optimum cost of 1.9105 USD/kg with hydrogen purity, hydrogen yield, hydrogen efficiency and thermodynamic efficiency are 79.9 mol%, 17.97 g/hr, 81.47% and 79.85% respectively. The results indicate that this system has the potential to offer low production cost for hydrogen production from palm waste

    Ammonium Fluoride as a Hydrogen-disordering Agent for Ice

    Full text link
    The removal of residual hydrogen disorder from various phases of ice with acid or base dopants at low temperatures has been a focus of intense research for many decades. As an antipode to these efforts, we now show using neutron diffraction that ammonium fluoride (NH4F) is a hydrogen-disordering agent for the hydrogen-ordered ice VIII. Cooling its hydrogen-disordered counterpart ice VII doped with 2.5 mol% ND4F under pressure leads to a hydrogen-disordered ice VIII with ~31% residual hydrogen disorder illustrating the long-range hydrogen-disordering effect of ND4F. The doped ice VII could be supercooled by ~20 K with respect to the hydrogen-ordering temperature of pure ice VII after which the hydrogen-ordering took place slowly over a ~60 K temperature window. These findings demonstrate that ND4F-doping slows down the hydrogen-ordering kinetics quite substantially. The partial hydrogen order of the doped sample is consistent with the antiferroelectric ordering of pure ice VIII. Yet, we argue that local ferroelectric domains must exist between ionic point defects of opposite charge. In addition to the long-range effect of NH4F-doping on hydrogen-ordered water structures, the design principle of using topological charges should be applicable to a wide range of other 'ice-rule' systems including spin ices and related polar materials.Comment: 23 pages, 4 figures, 2 table
    • …
    corecore