64,613 research outputs found

    High-Latitude Communications Satellite (HILACS)

    Get PDF
    The Naval Postgraduate School in the AE 4871 Advanced Spacecraft Design course designed a communications satellite (HILACS) that will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specific coverage. The satellite orbit is elliptic with perigee at 1204 km in the Southern Hemisphere and an apogee at 14,930 km with 63.4 degrees inclination. Analysis and design of each of the subsystems was done to the extent possible within the constraints of an eleven week quarter and the design and analysis tools available. Work was completed in orbital analysis, the reaction control system, attitude control subsystem, electric power subsystem, telemetry, tracking, and control, thermal control subsystem, and the structures subsystem. The design team consisted of 12 students. Additional support was provided by the Jet Propulsion Laboratory and the Naval Research Laboratory

    Spacecraft design project: High latitude communications satellite

    Get PDF
    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage

    High latitude field of polar disturbances

    Get PDF
    Synoptic meteorological study of high latitude field of polar disturbance

    Measurements of the Sun's High Latitude Meridional Circulation

    Full text link
    The meridional circulation at high latitudes is crucial to the build-up and reversal of the Sun's polar magnetic fields. Here we characterize the axisymmetric flows by applying a magnetic feature cross-correlation procedure to high resolution magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We focus on Carrington Rotations 2096-2107 (April 2010 to March 2011) - the overlap interval between HMI and the Michelson Doppler Investigation (MDI). HMI magnetograms averaged over 720 seconds are first mapped into heliographic coordinates. Strips from these maps are then cross-correlated to determine the distances in latitude and longitude that the magnetic element pattern has moved, thus providing meridional flow and differential rotation velocities for each rotation of the Sun. Flow velocities were averaged for the overlap interval and compared to results obtained from MDI data. This comparison indicates that these HMI images are rotated counter-clockwise by 0.075 degrees with respect to the Sun's rotation axis. The profiles indicate that HMI data can be used to reliably measure these axisymmetric flow velocities to at least within 5 degrees of the poles. Unlike the noisier MDI measurements, no evidence of a meridional flow counter-cell is seen in either hemisphere with the HMI measurements: poleward flow continues all the way to the poles. Slight North-South asymmetries are observed in the meridional flow. These asymmetries should contribute to the observed asymmetries in the polar fields and the timing of their reversals.Comment: 6 pages, 3 color figures, accepted for publication in The Astrophysical Journal Lette

    Distance to the northern high-latitude HI shells

    Full text link
    A detailed 3D distribution of interstellar matter in the solar neighborhood is increasingly necessary. As part of a 3D mapping program, we aim at assigning a precise distance to the high-latitude HI gas in particular the northern part (b \geq 55^{circ}) of the shell associated with the conspicuous radio continuum Loop I. This shell is thought to be the expanding boundary of an interstellar bubble inflated and recently reheated by the strong stellar winds of the nearby Scorpius-Centaurus OB. We recorded high-resolution spectra of 30 A-type target stars located at various distances in the direction of the northern part of Loop I. Interstellar NaI 5889-5895 and CaII K-H 3934-3968 {\AA} are modeled and compared with the HI emission spectra from the LAB Survey. About two-thirds of our stellar spectra possess narrow interstellar lines. Narrow lines are located at the velocity of the main, low-velocity Loop 1 HI shell ([-6,+1] km/s in the LSR). Using Hipparcos distances to the target stars, we show that the closest boundary of the b geq+70^{\circ} part of this low-velocity Loop I arch is located at of 98 \pm 6 pc. The corresponding interval for the lower-latitude part (55^{\circ} \leq b \leq 70^{\circ}) is 95-157 pc. However, since the two structures are apparently connected, the lower limit is more likely. At variance with this shell, the second HI structure, which is characterized by LSR Doppler velocities centered at -30 km/s, is NOT detected in any of the optical spectra. It is located beyond 200 parsecs or totally depleted in NaI and CaII. We discuss these results in the light of spherical expanding shells and show that they are difficult to reconcile with simple geometries and a nearby shell center close to the Plane. Instead, this high-latitude gas seems to extend the inclined local chimney wall to high distances from the Plane.Comment: Astronomy & Astrophysics (A&A in press

    Dust emission from high latitude cirrus clouds

    Get PDF
    In order to study dust emission from grains in the interstellar medium, the infrared properties were analyzed in a number of isolated high latitude dust clouds which contain no dominant internal heating sources. The clouds are spatially resolved, have a simple geometry, and are mapped in the IRAS bands at 12, 25, 60, and 100 microns. For a number of these clouds, extinction data (A sub B) were obtained from starcounts. A large part (30 to 50 percent) of the infrared radiation of the clouds in the IRAS wavelength range of 8 to 130 micron is emitted in the short wavelength bands at 12 and 25 micron. The 60/100 micron ratios for the integrated fluxes of the clouds have a typical value of 0.19 + or - 0.05

    Optical Spectroscopic Survey of High-latitude WISE-selected Sources

    Get PDF
    We report on the results of an optical spectroscopic survey at high Galactic latitude (|b| ≥ 30°) of a sample of WISE-selected targets, grouped by WISE W1 (λ_eff = 3.4 μm) flux, which we use to characterize the sources WISE detected. We observed 762 targets in 10 disjoint fields centered on ultraluminous infrared galaxy candidates using DEIMOS on Keck II. We find 0.30 ± 0.02 galaxies arcmin–2 with a median redshift of z = 0.33 ± 0.01 for the sample with W1 ≥ 120 μJy. The foreground stellar densities in our survey range from 0.23 ± 0.07 arcmin–2 to 1.1 ± 0.1 arcmin–2 for the same sample. We obtained spectra that produced science grade redshifts for ≥90% of our targets for sources with W1 flux ≥120 μJy that also had an i-band flux gsim 18 μJy. We used this for targeting very preliminary data reductions available to the team in 2010 August. Our results therefore present a conservative estimate of what is possible to achieve using WISE's Preliminary Data Release for the study of field galaxies
    corecore