428,479 research outputs found

    The Brain-Gut-Microbiome Axis.

    Get PDF
    Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases

    Flavor structure of E6 GUT models

    Full text link
    It has been pointed out that in E6 grand unified theory with SU(2) family symmetry, the spontaneous CP violation can solve the supersymmetric CP problem. The scenario predicts V_{ub} \sim O(\lambda^4) rather than O(\lambda^3) which is naively expected value, because of a cancellation at the leading order. Since the experimental value of V_{ub} is O(\lambda^4), it must be important to consider the reason and the conditions for the cancellation. In this paper, we give a simple reason for the cancellation and show that in some E6 models such a cancellation requires that the vacuum expectation value (VEV) of the adjoint Higgs does not break U(1)_{B-L}. Note that this direction of the VEV plays an important role in solving the doublet-triplet splitting problem by Dimopoulos-Wilczek mechanism. In this E6 models, the experiments may measure the direction of the adjoint Higgs VEV by measuring the size of V_{ub} \sim O(\lambda^4).Comment: 16 page

    Heterotic GUT and Standard Model Vacua from simply connected Calabi-Yau Manifolds

    Full text link
    We consider four-dimensional supersymmetric compactifications of the E8 x E8 heterotic string on Calabi-Yau manifolds endowed with vector bundles with structure group SU(N) x U(1) and five-branes. After evaluating the Green-Schwarz mechanism and deriving the generalized Donaldson-Uhlenbeck-Yau condition including the five-brane moduli, we show that this construction can give rise to GUT models containing U(1) factors like flipped SU(5) or directly the Standard Model even on simply connected Calabi-Yau manifolds. Concrete realizations of three-generation models on elliptically fibered Calabi-Yau manifolds are presented. They exhibit the most attractive features of flipped SU(5) models such as doublet-triplet splitting and proton stability. In contrast to conventional GUT string models, the tree level relations among the Standard Model gauge couplings at the GUT scale are changed.Comment: 46 pages, 2 figures, 6 tables; v2: references added, typos corrected; v3: typos corrected, final version published in Nucl.Phys.

    Pleiotropic and Novel Phenotypes in The \u3cem\u3eDrosophila\u3c/em\u3e Gut Caused by Mutation of \u3cem\u3eDrop-Dead\u3c/em\u3e

    Get PDF
    Normal gut function is vital for animal survival, and deviations from such function can contribute to malnutrition, inflammation, increased susceptibility to pathogens, diabetes, neurodegenerative diseases, and cancer. In the fruit fly Drosophila melanogaster, mutation of the gene drop-dead (drd) results in defective gut function, as measured by enlargement of the crop and reduced food movement through the gut, and drd mutation also causes the unrelated phenotypes of neurodegeneration, early adult lethality and female sterility. In the current work, adult drd mutant flies are also shown to lack the peritrophic matrix (PM), an extracellular barrier that lines the lumen of the midgut and is found in many insects including flies, mosquitos and termites. The use of a drd-gal4 construct to drive a GFP reporter in late pupae and adults revealed drd expression in the anterior cardia, which is the site of PM synthesis in Drosophila. Moreover, the ability of drd knockdown or rescue with several gal4 drivers to recapitulate or rescue the gut phenotypes (lack of a PM, reduced defecation, and reduced adult survival 10–40 days post-eclosion) was correlated to the level of expression of each driver in the anterior cardia. Surprisingly, however, knocking down drd expression only in adult flies, which has previously been shown not to affect survival, eliminated the PM without reducing defecation rate. These results demonstrate that drd mutant flies have a novel phenotype, the absence of a PM, which is functionally separable from the previously described gut dysfunction observed in these flies. As the first mutant Drosophila strain reported to lack a PM, drd mutants will be a useful tool for studying the synthesis of this structure

    Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis

    Get PDF
    The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics

    Antisymmetric Higgs representation in SO(10) for neutrinos

    Get PDF
    A Model based on SO(10) grand unified theory (GUT) and supersymmetry is presented to describe observed phenomena for neutrinos. The large mixing angles among different generations, together with the small masses, are attributed to the Higgs boson structure at the GUT energy scale. Quantitative discussions for these observables are given, taking into account their energy evolution.Comment: 10 page

    Cosmic String Network Evolution in arbitrary Friedmann-Lemaitre models

    Get PDF
    We use the velocity-dependent one-scale model by Martins & Shellard to investigate the evolution of a GUT long cosmic string network in arbitrary Friedmann-Lemaitre models. Four representative models are used to show that in general there is no scaling solution. The implications for structure formation are briefly discussed.Comment: 8 pages, 4 postscript figures included, submitted to Phys. Rev.
    corecore