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Abstract 
Normal gut function is vital for animal survival, and deviations from such function can contribute to 
malnutrition, inflammation, increased susceptibility to pathogens, diabetes, neurodegenerative diseases, and 
cancer. In the fruit fly Drosophila melanogaster, mutation of the gene drop-dead (drd) results in defective gut 
function, as measured by enlargement of the crop and reduced food movement through the gut, 
and drd mutation also causes the unrelated phenotypes of neurodegeneration, early adult lethality and female 
sterility. In the current work, adult drd mutant flies are also shown to lack the peritrophic matrix (PM), an 
extracellular barrier that lines the lumen of the midgut and is found in many insects including flies, mosquitos 
and termites. The use of a drd-gal4 construct to drive a GFP reporter in late pupae and adults 
revealed drd expression in the anterior cardia, which is the site of PM synthesis in Drosophila. Moreover, the 
ability of drd knockdown or rescue with several gal4 drivers to recapitulate or rescue the gut phenotypes (lack of 
a PM, reduced defecation, and reduced adult survival 10–40 days post-eclosion) was correlated to the level of 
expression of each driver in the anterior cardia. Surprisingly, however, knocking down drd expression only in 
adult flies, which has previously been shown not to affect survival, eliminated the PM without reducing 
defecation rate. These results demonstrate that drd mutant flies have a novel phenotype, the absence of a PM, 
which is functionally separable from the previously described gut dysfunction observed in these flies. As the first 
mutant Drosophila strain reported to lack a PM, drd mutants will be a useful tool for studying the synthesis of 
this structure. 
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1. Introduction 
Obtaining energy from food is vital for animal survival, and deviations from normal digestive functioncan have 
significant impacts on organismal fitness. The gut of Drosophila melanogaster is a well characterized model for 
studying digestive function (Guo et al., 2016, Lemaitre and Miguel-Aliaga, 2013). In adult flies, ingested food is 
stored in the crop. For digestion to occur, the crop contracts and food passes through the stomodeal valve of 
the cardia into the midgut (Gelperin, 1971, Stoffolano and Haselton, 2013). As in many other insect species, the 
midgut of both larval and adult Drosophila is lined with the PM, a semipermeable extracellular barrier (Hegedus 
et al., 2008, Lehane, 1997, Terra, 2001). Nutrients pass through the PM and are absorbed by the gut 
epithelial enterocytes (Lemaitre and Miguel-Aliaga, 2013). Chemical or enzymatic ablation of the PM in the 
larvae of multiple insect species has demonstrated a role for this structure in digestive efficiency and protection 
against ingested pathogens (Barbehenn, 2001, Bolognesi et al., 2001, Rao et al., 2004. Wang and Granados, 
2000). 
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Mutation of the Drosophila gene drd leads to multiple adult phenotypes including female sterility, 
neurodegeneration, early adult lethality and defective gut function (Blumenthal, 2008, Peller et al., 2009). 
The drd gene encodes a member of the NRF-domain family of proteins, which have limited homology to a family 
of bacterial acyltransferases and for which a biochemical function has not yet been determined (Blumenthal, 
2008). In drd mutant flies, the crop, while still capable of contracting, becomes enlarged, and food movement 
through the digestive system is inhibited, as indicated by reduced defecation rates (Blumenthal, 2008, Peller et 
al., 2009). Additionally, triglyceride and glycogen stores become depleted in the mutants. Therefore, it appears 
that drd mutant flies exhibit a starvationphenotype despite ingesting food (Peller et al., 2009). 

We initially hypothesized that the defect in food movement through the gut in drd mutants might be a 
secondary consequence of neurodegeneration and the resulting loss of neuronal control over the stomodeal 
valve in the cardia (Peller et al., 2009). However, in subsequent work we separated these two phenotypes by 
manipulating drd expression specifically in the respiratory tracheae (Sansone and Blumenthal, 2013). 
When drd expression is knocked down in the tracheal system, flies exhibit neurodegeneration and early adult 
lethality (median lifespan of 5 days), but not gut dysfunction, as measured by defecation rate and nutrient 
storage. Additionally, rescue of drd expression in the tracheae in a drd mutant background rescues 
neurodegeneration and extends adult lifespan (median lifespan of 8 days) without rescuing defecation rate. 
Therefore, the neurodegenerative and gut dysfunction phenotypes are independent, with the first associated 
with drd expression in the tracheae and the tissue dependence of the second still undetermined. In addition, the 
extent to which drd mutant gut dysfunction contributes to early adult lethality remains unknown. 

Here, we continue our characterization of drd mutants and report a novel and unique gut phenotype 
of drd mutants: lack of a PM. We find that continuous expression of drd in the adult is necessary for PM 
formation, but surprisingly, lacking a PM is not the sole cause of drd mutant gut dysfunction nor does the 
absence of a PM appear to contribute to early adult lethality. 

2. Materials and methods 
2.1. Drosophila stocks and maintenance 
All fly stocks were maintained on standard cornmeal-yeast-agar food 
(http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/molassesfood.htm) at 25 °C on a 12 h:12 h light: dark 
cycle. For heat-shock experiments, flies were kept at 30 °C for the time periods described in the results. For RNAi 
experiments, a UAS-Dcr-2 transgene was included in the genetic background of the flies in order to boost RNAi 
efficiency; the drdGD15915 UAS-Dcr-2 and UAS-Dcr-2 drdGD3367 lines were created previously by recombination 
between VDRC stocks w1118;P{GD3367}v37404 (FBst0461992) and w1118; P{GD15915}v51184 (FBst0469325) and 
Bloomington stock w1118; P{UAS-Dcr-2.D}2 (FBst0024650, RRID:BDSC_24650) (Sansone and Blumenthal, 2012). 
Other stocks (w1118; P{UAS-GFP.nls}14(FBst0004775, RRID:BDSC_4775), w∗; P{GAL4-Hsp70.PB}2 (FBst0002077, 
RRID:BDSC_2077), w∗; P{UAS-lacZ.B}Bg4-2-4b (FBst0001777, RRID:BDSC_1777), w1118; 
P{GawB}DJ717 (FBst0008180, RRID:BDSC_8180), w1118; P{GawB}DJ626 (FBst0008166, RRID:BDSC_8166), w1118; 
P{GawB}DJ628(FBst0008167, RRID:BDSC_8167), y1 w∗ Mi{y+mDint2=MIC}drdMI15121/FM7h (FBst0059743, 
RRID:BDSC_59743), y1 w∗; P{w+mC=loxP(Trojan-GAL4.1)}12B; Dr1/TM3, Sb1 (FBst0060304, 
RRID:BDSC_60304), y1 w67c23; snaSco/CyO, P{w+mC = Crew}DH1 (FBst0001092, RRID:BDSC_1092), y1M{3xP3-
RFP.attP}ZH-2A w∗; M{vas-int.Dm}ZH-102D (FBst0024480, RRID:BDSC_24480), and FM7i/C(1)DX, 
y1 f1 (FBst0005263, RRID:BDSC_5263)) were obtained from the Bloomington DrosophilaStock Center. The line 
bearing the second chromosome UAS-drd on a drdlwf background was described previously (Sansone and 
Blumenthal, 2012). The genes and alleles referenced in this work 
include drd(FBgn0260006), drdlwf (FBal0193421), drd1 (FBal0003113), and drdMI15121 (FBal0302603). Stocks were 
not outcrossed prior to this study. 
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For rescue experiments with two copies of the DJ717-gal4 driver, the UAS-drd transgene was recombined onto 
the DJ717-gal4 driver chromosome by a standard crossing scheme. Recombinants were identified by PCR 
(GoTaq Hot Start Polymerase, Promega, Madison, WI). Primers used to detect the UAS-drd transgene were 
pUAST 3′ seq: 5′ CAG TTC CAT AGG TTG GAA TC 3′ and CG5652 6a: 5′ GAT CGC CTG GTG TTT GTT TT 3′. The 
resulting recombinant chromosome was crossed onto a drdlwf background. 

2.2. Calcofluor staining 
Calcofluor (Sigma-Aldrich, St. Louis, MO) was prepared in water as a 1% solution. For staining procedure 1, two-
day old flies were fed with a 1:3 mixture of calcofluor solution and 1% sucrose for 6 h-overnight. Midguts were 
then dissected in PBS, fixed in 4% PFA/PBS for 30 min, washed 3 × 10 min in PBS and mounted on slides. For 
staining procedure 2, midguts of two-day old flies were dissected and placed into a 1% calcofluor solution for 
30 min. The guts were then fixed, washed, and mounted as above. 

2.3. Gut histology 
Flies were decapitated and the posterior tip of the abdomen removed and were then fixed in 2% glutaraldehyde, 
buffered at pH 7.3 with 50 mM Na-cacodylate and 150 mM saccharose. Postfixation was carried out in 2% 
osmium tetroxide in the same buffer. After dehydration in a graded acetone series, tissues were embedded in 
Araldite and sectioned with a Leica EM UC6 ultramicrotome. Semithin 1 μm sections were stained 
with methylene blue and thionin and viewed with an Olympus BX-51 microscope. 

2.4. X-gal staining 
X-gal staining in adults was performed as previously described (Choi et al., 2008). The digestive systemwas 
dissected in PBS on ice, fixed in 1% glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA) in PBS for 
10 min, and washed in 1x PBS for 1 h at room temperature. The digestive system was stained with 0.2% X-gal 
(IBI Scientific, Peosta, IA) in staining buffer (6.1 mM K4Fe(CN)6, 6.1 mM K3Fe(CN)6, 1 mM MgCl2, 150 mM NaCl, 
10 mM Na2HPO4,10 mM NaH2PO4) in the dark at room temperature for 30 min (DJ717-gal4, DJ626-gal4) or 1 h 
(DJ628-gal4). The digestive system was then mounted in VectaShield Mounting Medium with DAPI and imaged 
on Axioskop-2 with Axiovision image analysis software. For pupal digestive system staining, 4-day-
old pupae were dissected out of their pupal cases and fixed in 1% glutaraldehyde in 1x PBS overnight at 4 °C. The 
digestive system was dissected in 1x PBS at room temperature, washed 3x10 min in PBS, and stained with 0.2% 
X-gal in staining buffer for 15 min (DJ717-gal4, DJ626-gal4) or 1 h (DJ628-gal4). Mounting and visualization were 
performed the same as the adult digestive systems. 

2.5. Lifespan Assays 
Flies were collected on the day of eclosion, transferred to fresh vials every 2–7 days, and scored daily for survival 
for 40 days. A minimum of 50 flies per genotype were used for each survival curve. 

2.6. Defecation Assays 
Assays were performed as previously described (Blumenthal, 2008). Briefly, two male flies were placed in a vial 
containing instant food (Carolina Biological, Burlington, NC) prepared with 0.5% Acid Blue 9 on the day of 
eclosion (unless otherwise indicated in the text). After 24 h, the flies were transferred to a fresh vial. After 
another 24 h, the blue fecal spots on the vial were counted. 

2.7. Haematoxylin and eosin staining 
Flies were decapitated and heads were fixed in 4% paraformaldehyde in 1× PBS for 3 h at 4 °C. Heads were 
washed 3 times for 10 min in 1× PBS and then were incubated in 30% sucrose in 1× PBS at 4 °C overnight. Heads 
were mounted in Tissue-Tek OCT Compound (Sakura, Toyko, Japan), snap frozen, and sectioned at 5 µm. 
Sections were stained with haematoxylin (VWR, West Chester, PA) and eosin(VWR), mounted in Permount 
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(Electron Microscopy Sciences, Hatfield, PA), and imaged on an Axioskop-2 microscope (Zeiss, Thornwood, NY) 
at 10x with Axiovision image analysis software (Zeiss). Neurodegeneration was scored by the presence of holes 
in intact brain tissue. Multiple sections of a single brain were viewed and the presence or absence of holes was 
consistent throughout the whole tissue. 

2.8. Construction of drd-gal4 driver 
The gal4 driver line yw drd-gal4/FM7a was made through Recombination-Mediated Cassette Exchange of a T2A-
gal4 “Trojan” cassette into the MiMIC insertion drdMI15121 (Bellen et al., 2011, Diao et al., 2015, Venken et al., 
2011). y1 w∗ Mi{y+mDint2 = MIC}drdMI15121/FM7h; P{w+mC = loxP(Trojan-GAL4.1)}12B females were obtained from a 
stock generated by crossing y1 w∗ Mi{y+mDint2 = MIC}drdMI15121/FM7h x y1 w∗; P{w+mC = loxP(Trojan-GAL4.1)}12B; 
Dr1/TM3, Sb1. These females were crossed with y1 w67c23; CyO/+, P{w+mC = Crew}DH1/+; M{vas-int.Dm}ZH-
102D/+ males that were generated by crossing y1 w67c23; snaSco/CyO, P{w+mC = Crew}DH1 x y1 M{3xP3-
RFP.attP}ZH-2A w∗; M{vas-int.Dm}ZH-102D. Individual yellow- male progeny were crossed with C(1)DX, y1 f1 and 
genotyped to confirm the presence and orientation of the T2A-gal4 insertion. The PCR primers used for 
genotyping were ATTTCAATCGGTCGCTGACT and GCTCTCCTCGCTGCTG. One confirmed yw drd-gal4chromosome 
was then balanced over FM7a. 

2.9. Synthesis of the UAS-drd (III) line 
The drd coding sequence was amplified (KOD Hotstart polymerase, EMD Millipore, Billerica, MA) in a two-step 
amplification from a previously constructed UAS-drd plasmid using the primers 
AAAAAGCAGGCTGCATGTCGCGTATGTCGCATAT and AGAAAGCTGGGTTCTAATCCGAGTGCGGATGAT and the 
Gateway attB adapter primers GGGGACAAGTTTGTACAAAAAAGCAGGCT and 
GGGGACCACTTTGTACAAGAAAGCTGGGT. The resulting PCR product was cloned first into the Gateway donor 
vector pDONR221 (Thermo Fisher Scientific, Waltham, MA) and then into the expression vector pBID-UASC-G 
(gift from Dr. Brian McCabe (Addgene plasmid # 35,202)) (J.-W. Wang et al., 2012). The transgene was 
integrated into the P{CaryP}attP2 site on chromosome 3L (Genetivision Corp., Houston, TX). 

2.10. Visualization of GFP reporter expression 
Cardias were dissected in PBS or Insect Ringers and stained for 30 min in 1 μg/mL DAPI (Biotium, Fremont, CA) in 
PBS-T. After rinsing, samples were imaged on a Nikon A1 Confocal Microscope (Nikon, Tokyo, Japan) with NIS-
Elements AR software (Nikon). 

2.11. Statistics and data analysis 
Data were graphed and analyzed using GraphPad Prism v6 for Windows (GraphPad Software, San Diego, CA, 
www.graphpad.com). A non-parametric test was used for the defecation data in Fig. 8because the RNAi dataset 
was not normally distributed, as determined by a D'Agostino & Pearson omnibus normality test. Survival curves 
were compared with a Mantel-Cox log-rank test. 

3. Results 
3.1. drd mutants lack a peritrophic matrix 
We have previously reported defective gut function in drd mutants, as indicated by enlarged crop volumes, slow 
movement of food into the midgut, and decreased defecation (Blumenthal, 2008, Peller et al., 2009). We now 
find a structural abnormality in the guts of adult drd mutants, namely the absence of the PM. The PM can be 
visualized by gross dissection of the midgut as a transparent, tough membrane running down the lumen of the 
midgut (Fig. S1). A PM was always observed (more than 50 dissections) in adult wild-type flies or females 
heterozygous for the severe alleles drd1 or drdlwf, but we never observed a PM in at least 50 dissections of 
adult drd1 or drdlwf hemizygous males or homozygous females (aged 2–7 days post-eclosion). In contrast, 
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formation of the larval PM did not appear to be affected by mutation of drd, as we observed a PM in 16/16 male 
third-instar drdlwf mutants by gross dissection. To confirm the absence of the PM in adult drd mutants, we 
imaged dissected midguts of drdmutants after feeding with the chitin-binding dye calcofluor. Wildtype midguts 
showed a bright, clear, structured blue staining down the midgut, indicating the presence of a PM, 
while drd mutant midguts showed only weak, diffuse blue staining (n = 10 total two-day 
old drdlwf and drd1 heterozygous females and 7 homozygous females, Fig. 1). Because drd mutant flies have a 
defect in the movement of food into their midgut, the absence of calcofluor staining in mutants could have 
resulted from a failure of the dye to reach the PM. To control for this possibility, dissected midguts from wild-
type and drd mutant flies were incubated in calcofluor, and again, a clearly stained PM was observed in the wild-
type but not the mutant midguts (n = 8 total two-day old drdlwf and drd1 heterozygous females and 17 
homozygous females, Fig. S2). Finally, the PM was visualized in semi-thin sections. As shown in Fig. 2A and 2B, 
the PM is visible in cross-sections of the midgut of drdlwf heterozygous females but not drdlwfhomozygotes. In 
addition, longitudinal sections of the cardia of heterozygotes show the PM associated with the anterior midgut 
cells and proceeding down the midgut lumen, while in homozygotes the cardia is severely distended and no 
recognizable PM is present (Fig. 2C and 2D). 

 

Fig. 1. Staining of the PM following calcofluor feeding. Two-day old heterozygous drdlwf/FM7a (A) and 
homozygous drdlwf/drdlwf (B) females were fed calcofluor to stain the PM (arrow in A). Midguts were then 
dissected and imaged. Scale bars: 100 μm. 

 

Fig. 2. Histology of drd mutant midguts. One-day old drdlwf/FM7a (A, C) and drdlwf/drdlwf (B, D) females. Arrows 
indicate the PM in cross-sections of the midgut (A, B) and longitudinal sections of the cardia (C, D). In C and D, 
the cardia is oriented with the anterior to the right, and the interior foregut section is marked (fg). Note the 
diffuse grey material posterior to the cardia in the homozygous mutant (asterisks). Similar results were observed 
in sections from three heterozygotes and three homozygotes. Scale bars: 100 μm. 

3.2. drd is expressed in the cardia 
Because the cardia is the site of PM synthesis in Drosophila, we hypothesized that drd is expressed in the cardia. 
To determine the endogenous expression pattern of drd, we used the gal4-UAS gene expression system. Using 
recombination-mediated cassette exchange (see methods), we constructed a drd-gal4 driver in which 
expression of the yeast gal4 transcriptional activator is controlled by the regulatory elements of the drd gene. 
This gal4 driver can then be used to induce expression of any transgene attached to the UAS DNA 
sequence (Brand and Perrimon, 1993). Note that as a result of the gal4 insertion into the drd gene, the drd-
gal4 driver is itself a drd null mutant. However, when this insertion was used to drive drd expression from a UAS-
drd transgene, the resulting flies all had PMs and showed 100% survival for the first 40 days post-eclosion (Fig. 
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3 and Table 1). This result indicates that the spatiotemporal expression pattern of drd defined by the drd-
gal4 transgene is sufficient to rescue both PM formation and adult survival. We then combined this drd-
gal4 driver with a UAS-GFPreporter and observed the resulting GFP expression in the recurrent wall of the 
anterior cardia of both pupal and adult flies (Fig. 4). 

 

Fig. 3. Complete rescue of adult survival with the drd-gal4 driver. Complete rescue of adult survival 
in drd mutants was observed when expression of the UAS-drd transgene was driven by drd-gal4 (filled squares) 
compared with mutants lacking UAS-drd (open squares). n = 51–55 male flies per genotype. Complete rescue 
was also observed in females using the drd-gal4 driver and the second chromosome UAS-drd transgene (Fig. S3). 

Table 1. Presence of the PM following knockdown or rescue of drd expression with various gal4 drivers. 

Genotype PM Present 
drd-gal4; UAS-drd (III)/+ 25/25 
drd-gal4; TM3 Ser/+ 0/15 
drdGD15915/+; DJ626/+ 2/18 
CyO/+; DJ626/+ 18/18 
drdGD3367/+; DJ626/+ 1/18 
CyO/+; DJ626/+ 15/15 
drdGD15915/DJ717 0/13 
DJ717/CyO 13/13 
drdGD3367/DJ717 2/18 
DJ717/CyO 14/14 
drdGD15915/+; DJ628/+ 16/16 
CyO/+; DJ628/+ 17/17 
drdGD3367/+; DJ628/+ 15/15 
CyO/+; DJ628/+ 14/14 
drdlwf; UAS-drd/+; DJ626/+ 17/17 
drdlwf; CyO/+; DJ626/+ 0/9 
drdlwf; UAS-drd DJ717/DJ717 0/13 
drdlwf; DJ717/CyO 0/13 

 

Each pair of genotypes represents either knockdown or rescue flies (top line) and sibling controls (bottom line). 
The first and last two pairs are rescue experiments with the drd-gal4, DJ626, and DJ717 drivers, respectively, 
while the second through seventh pairs are knockdown experiments with the DJ626, DJ717, and DJ628 drivers 
and two different drd RNAi transgenes. Presence or absence of the PM was assessed by gross dissection in two-
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day old male flies. Blank rows indicate sibling controls. The totals for each phenotype include progeny from at 
least two independent crosses. 

 

Fig. 4. Expression of drd in the cardia. Images are shown of a day four pupa (A) and a two-day old adult (B). Both 
tissues were from yw drd-gal4/w; UAS-GFP.nls/+ females in which the expression of a nuclear GFP reporter was 
driven by drd-gal4, and nuclei were counterstained with DAPI. Images are oriented with the anterior end of the 
cardia to the right. Arrows indicate the nuclei of the outer, midgut layer of the cardia. Scale bars: 100 μm (A), 
50 μm (B). 

3.3. drd expression in the cardia is necessary for peritrophic matrix formation and normal 
defecation rate 
To determine the relationship between drd expression in the cardia and the gut-related phenotypes 
of drd mutant flies, we examined the effects of manipulating drd expression with three gal4 drivers with 
differing levels of expression in the cardia: DJ626, DJ717, and DJ628 (Seroude, 2002). To visualize their 
expression patterns, each gal4 driver was used to drive expression of a UAS-LacZ reporter, and LacZexpression 
was visualized by X-gal staining. The DJ626 driver showed robust expression in the anterior cardia of both 
late pupae and young adults, the DJ717 driver showed mild expression in the cardia only in the adult, and 
the DJ628 driver was not expressed in the cardia (Fig. 5). Importantly, both DJ626 and DJ717 are also expressed 
in the respiratory tracheae ((Sansone and Blumenthal, 2013) and data not shown). 

 

Fig. 5. Expression patterns of gal4 drivers in the cardia. Expression is shown of the DJ626 (A, B), DJ717 (C, D) 
and DJ628 (E, F) enhancer traps in the cardia of day 4 pupae (A, C, E) and two-day old adults (B, D, F). Expression 
was observed by driving a UAS-LacZ reporter transgene followed by X-gal staining. All images are oriented with 
the anterior end of the cardia to the right. fg: foregut, car: cardia, mg: midgut. 

Each of the three drivers was then used to knock down drd expression on an otherwise wild-type background. 
We have previously reported that driving drd RNAi with DJ717 results in early adult lethality and 
neurodegeneration, similar to the phenotypes that are observed when RNAi is driven by the tracheal-specific 
driver btl-gal4 (Sansone and Blumenthal, 2013). Further examination of the DJ717RNAi flies indicated that they 
also lacked a PM and had reduced defecation rates (Table 1 and Fig. 6A). Identical phenotypes were observed 
when drd RNAi was induced by two different transgenes, drdGD3367and drdGD15915. Driving drd RNAi 
with DJ626 gave the same results as with DJ717: early lethality (Fig. 7A), reduced defecation (Fig. 6B), loss of the 
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PM (Table 1), and neurodegeneration (holes were observed in 13/18 drd RNAi vs 0/11 control brains, Fig. S4). In 
contrast, drd RNAi driven by DJ628 had no effect on adult survival and did not eliminate the PM (Fig. 7B 
and Table 1). 

 

Fig. 6. Effect on defecation of knocking down or rescuing drd expression with the DJ717 and DJ626 drivers. While 
RNAi with either DJ717 (A) or DJ626 (B) (filled triangles and circles) reduced defecation compared to controls 
lacking the gal4 driver (open triangles and circles), only DJ626 was able to drive significant rescue of defecation 
on a drd mutant background (filled squares) compared to controls lacking the gal4 driver (open squares) (1-way 
ANOVA with Bonferroni’s multiple comparison test). n = 6 vials per genotype, error bars represent SD. 

 

Fig. 7. Effect on adult survival of knocking down and rescuing drd expression with gal4 drivers. Survival curves 
are shown following knockdown of drd with the DJ626 (A) and DJ628 (B) drivers (filled symbols are 
knockdown flies and open symbols are controls lacking the gal4 driver) and rescue of drd expression on 
a drd mutant background with the DJ717 (C) and DJ626 (D) drivers (open squares are drd mutants lacking the 
gal4 driver, filled squares are rescue flies, and filled circles are rescue flies with two copies of the gal4 driver (C) 
or two copies of the UAS-drd transgene(D)). n = 50–68 male flies per genotype. 

When the DJ717 and DJ626 drivers were used, in combination with UAS-drd, to rescue drd expression in 
otherwise drd mutant flies, we observed a difference between the two drivers. Both drivers rescued 
neurodegeneration (holes were observed in 0/10 20-day old DJ717 rescue and 0/7 20-day old DJ626rescue 
brains, Fig. S4), and both only partially rescued adult survival, although DJ626 had a stronger effect (Fig. 7C and 
D). The partial rescue of adult survival did not appear to be due to the level of expression of the gal4 drivers, as 
rescue was not enhanced by the addition of a second copy of the driver or UAS transgene (Fig. 7C and D). 
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Only DJ626 rescued defecation rate and the presence of the PM; flies in which drd expression was rescued 
by DJ717 lacked a PM and had a defecation rate no different from mutant controls (Fig. 6 and Table 1). Thus, the 
ability of these two drivers to rescue the gut-related phenotypes of drd mutants is correlated to the level of their 
expression in the cardia. 

3.4. Continuous drd expression in the adult is necessary for PM formation but the PM is 
not necessary for adult survival or defecation rate 
The results described above show a correlation among the phenotypes of reduced defecation, lack of an adult 
PM, and survival beyond approximately 30 days post-eclosion. A causal relationship among the phenotypes 
would make sense if the absence of a PM impeded food movement through the gut or resulted in starvation by 
some other mechanism. However, we have previously reported that drdexpression during metamorphosis, but 
not in adults, is necessary and sufficient for adult survival (Sansone and Blumenthal, 2012). Because the PM is 
synthesized continuously during adulthood but presumably has no function in the non-feeding pupae, this result 
suggests either that drd expression in the adult is not required for PM synthesis or that the PM is not required 
for adult survival. To distinguish between these possibilities, we repeated three previous experiments on life 
stage-specific knockdown and rescue of drd expression and assayed for the presence of the PM and, when 
appropriate, for defecation rate. In experiment one, Adult Knockdown, drd expression was knocked down 
globally via heat shock-induced RNAi beginning on the day of eclosion, a treatment that has no effect on adult 
lifespan (Sansone and Blumenthal, 2012). After seven days of heat shock, flies in which drd was knocked down 
with the drdGD3367 transgene lacked a PM but showed normal defecation rates compared to sibling controls 
(Table 2 and Fig. 8). When RNAi was induced with drdGD15915, most flies still had a PM after 7 days, but lost the 
PM with longer heat-shock (Tables 2 and S1); accordingly, only drdGD3367 was used in the subsequent experiment. 
In experiment two, Pupal Knockdown, flies were heat-shocked to knock down drd only during metamorphosis, 
which results in early adult lethality. Three days after eclosion, these short-lived flies did have a PM (Table 2). 
Finally, in experiment three, Pupal Rescue, drd was rescued by heat shock on a drd mutant background only 
during metamorphosis. Seven days after eclosion, these adult flies lacked a PM (Table 2) but, as previously 
reported, showed rescue of the adult lethal phenotype. For the Pupal Knockdown and Pupal Rescue 
experiments, we did not measure defecation rate because the experimental flies in the former experiment and 
the control flies in the latter experiment did not survive long enough to allow comparisons between 
sibling genotypes. Taken together, these results indicate that drd expression is only necessary during adulthood 
for adult PM formation and surprisingly, that the presence of a PM is not necessary either for adult survival or 
for normal rates of defecation. 

Table 2. Adult expression of drd is required for PM formation. 

Experiment Genotype PM Present 
Adult Knockdown UAS-Dcr-2 drdGD3367/Hsp70-gal4 0/27  

UAS-Dcr-2 drdGD3367/CyO or Hsp70-gal4/CyO 19/19  
UAS-Dcr-2 drdGD15915/Hsp70-gal4 20/25  
UAS-Dcr-2 drdGD15915/CyO or Hsp70-gal4/CyO 17/17 

Pupal Knockdown UAS-Dcr-2 drdGD3367/Hsp70-gal4 13/13  
UAS-Dcr-2 drdGD3367/CyO 15/15 

Pupal Rescue w drdlwf; UAS drd/Hsp70-gal4 1/16  
w drdlwf; UAS drd/CyO 0/1 

 

The presence of the PM was scored in three experiments designed to knock down or rescue drd expression 
during either metamorphosis or adulthood (see text for details). In the Adult Knockdown experiment, the 
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experimental (knockdown) flies are UAS-Dcr-2 drdGD3367/Hsp70-gal4 and UAS-Dcr-2 drdGD15915/Hsp70-gal4, while 
the sibling controls lacking either the RNAi transgeneor the gal4 driver are UAS-Dcr-2 drdGD3367/CyO or Hsp70-
gal4/CyO and UAS-Dcr-2 drdGD15915/CyO or Hsp70-gal4/CyO. In the Pupal Knockdown experiment, the 
experimental (knockdown) flies are UAS-Dcr-2 drdGD3367/Hsp70-gal4, and the sibling controls lacking the driver 
are UAS-Dcr-2 drdGD3367/CyO. In the Pupal Rescue experiment, the experimental (rescue) flies are w drdlwf; UAS 
drd/Hsp70-gal4, and the mutant sibling controls lacking the driver are w drdlwf; UAS drd/CyO. The two 
knockdown experiments included both males and females, while the Pupal Rescue experiment only utilized 
males. The totals for each phenotype except the last include progeny from at least two independent crosses. 
Only a single fly was tested for the final phenotype because all other controls died in the first seven days 
post eclosion. 

 

Fig. 8. Knockdown of drd expression in the adult does not affect defecation rate. Defecation rate was measured 
in flies following heat-shock for the first seven days post eclosion (see text for details). No difference was seen 
between knockdowns (striped bar, n = 32 vials) and sibling controls (solid bar, n = 14 vials), p = .14, Mann-
Whitney test. Error bars represent SD. 

4. Discussion 
Here, we report a novel and unique gut phenotype of drd mutants: the absence of a PM. To be more precise, we 
have shown that adult drd mutants lack a detectable PM by gross dissection, chitin staining, and histology, while 
the PM is still present in larval drd mutants. However, the Drosophila PM has been shown to consist of at least 
four distinct layers, not all of which might contain chitin (King, 1988, Lehane, 1997). It is possible 
that drd mutants lack only the first layer, and that the material that would normally make up the remaining 
layers either fails to condense into a discrete structure (possibly consistent with the lightly stained material 
filling the cardia in Fig. 2D) or forms a structure that is not detectable by either histology or gross dissection. 
Consistent with a specific effect on a single chitinous layer of the PM, drd expression in the cardia appears to be 
localized to a region just anterior to the foregut/midgut transition, termed zones 2 and 3, which is where the 
first layer of the PM is synthesized (King, 1988). 

The DRD protein is proposed to function as an acyltransferase, based on sequence homology to biochemically 
characterized prokaryotic proteins, but no biochemical function for DRD or any related eukaryotic protein has 
been reported (Blumenthal, 2008). The protein contains multiple putative membrane-spanning domains and has 
been localized to an unidentified intracellular compartment (Kim et al., 2012). Based on its location and 
structure, it is possible that DRD is required in the secretory pathway of cardia epithelial cells for 
the posttranslational modification of a PM structural protein or synthetic enzyme. 

In our previous study, we used tracheal-specific knockdown and rescue of drd expression to identify the suite of 
phenotypes associated with a lack of drd expression in the tracheae, namely early adult lethality and 
neurodegeneration but not gut dysfunction (Sansone and Blumenthal, 2013). In the current work, we show that 
expression of drd in the pattern defined by the DJ626 driver, which is expressed in both the tracheae and the 
anterior cardia, was both necessary and sufficient for both the “tracheal” phenotypes of early lethality and 
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neurodegeneration and the “gut” phenotypes of reduced defecation and the absence of a PM. The pattern 
defined by the DJ717 driver, which is expressed at lower levels in the cardia than DJ626 and is also expressed in 
the tracheae, was both necessary and sufficient for the tracheal phenotypes and was effective in creating the 
gut phenotypes in knockdown experiments but not in rescuing them. These data suggest that the gut 
phenotypes are related to drdexpression in the cardia. However, both DJ626 and DJ717 are expressed in other 
tissues and other parts of the gut, and the absence of a driver specific to the anterior cardia precludes a direct 
test of this hypothesis. 

Using temporal control of drd expression, we can separate the two gut phenotypes, with the presence of a PM 
associated with drd expression in the adult and normal defecation associated with drd expression during pre-
adult development. This result was surprising in two respects. First, it shows that the presence of the PM is not 
required for movement of ingested food through the fly’s digestive tract. Second, it demonstrates that drd plays 
at least two different roles in the development and maintenance of the Drosophila gut and that the roles occur 
during different stages of the organism’s life cycle. As further evidence for the pleiotropic nature of drd function, 
we find that rescuing drd expression with the DJ626 driver did not fully rescue adult lethality, while rescuing 
expression with the drd-gal4 driver did achieve a complete rescue in survival. Thus, it appears that besides 
neurodegeneration and reduced food movement through the gut, drd mutants have at least one more 
physiological defect that eventually leads to adult lethality. The drd-gal4 driver will be an important tool in 
identifying further drd phenotypes by revealing the full expression pattern of drd. 

By knocking down drd expression only during adulthood, we can create flies that lack a PM, and we have 
previously reported that this treatment has no effect on adult survival (Sansone and Blumenthal, 2012). 
However, in order to sustain drd knockdown in the adult, we must maintain flies at 30 °C. Under these 
conditions, both knockdown and control flies began dying around 15 days post eclosion and exhibited 100% 
mortality by day 40. Kuraishi et al. have reported that flies mutant for the PM protein Crystallin (DCY), which 
have a leaky PM, begin dying around day 20 after eclosion and show approximately 50% mortality by day 40 
(Kuraishi et al., 2011). Due to the temperature-induced lethality observed in our adult knockdown flies, we 
cannot exclude the possibility that the PM is required for adult survival beyond three weeks, consistent with the 
results of Kuraishi et al. 

It has previously been reported that a “PM-less” phenotype can be created in the larvae of several insect species 
through feeding with either Calcofluor or chitinase (Bolognesi et al., 2001, Rao et al., 2004. Wang and Granados, 
2000). However, the drd mutant flies are the first reported Drosophila strain with a genetically ablated PM. 
Interest in the adult insect PM has increased recently due to its theorized role 
in immunity, microbiome maintenance, and virulence propagation and its identity as a potential target for 
pesticides (Abraham et al., 2017, El-Bassiony et al., 2016, Shi et al., 2016). Studying gut function in drd mutants 
and knockdowns is complicated by the expression and function of drd in multiple tissues and the many severe 
phenotypes that are independent of the PM. However, this mutation causes a more complete phenotype than 
“leaky” PM models (Kenmoku et al., 2016, Kuraishi et al., 2011), and we anticipate that the drd mutant fly will be 
an invaluable tool to better study the physiological roles and developmental pathways leading to the synthesis 
of the PM. 
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Appendix A. Supplementary data 

 

Supplementary Figure 1. Gross dissection of the PM.  The image shows a dissected midgut from a two-day old 
drdlwf/FM7a female.  The midgut (arrowheads) has been pulled apart to reveal the PM (arrow). 

 

Supplementary Figure 2. Calcofluor staining of PM in dissected midguts.  Midguts from two-day old drdlwf/FM7a 
(A) and drdlwf/drdlwf (B) females were dissected and incubated with calcofluor to stain the PM.  The diffuse 
staining seen in B indicates the epithelial cells lining the midgut. 

 

Supplementary Figure 3. Complete rescue of adult survival with the drd-gal4 driver.  Complete rescue of adult 
survival in drd homozygous mutant females was observed when expression of the UAS-drd transgene was driven 
by drd-gal4 (filled squares) compared with mutant males lacking drd-gal4 (open squares).  Filled triangles 
indicate survival of heterozygous females.   n=52-57 flies per genotype. 

https://www.sciencedirect.com/science/article/pii/S0022191017303773?via%3Dihub#gp005


 

Supplementary Figure 4. Neurodegeneration following knockdown and rescue of drd expression with DJ717 and 
DJ626.  A: Brain sections of 4 day old flies were stained with hematoxylin and eosin.  Neurodegeneration was 
observed following drd RNAi driven by DJ626 (bottom), but not in the sibling controls lacking the gal4 driver 
(top).  Yellow arrows indicate holes.  B: Rescue of drd expression by DJ717 on a drd mutant background rescued 
neurodegeneration (left), unlike in sibling controls without the driver (right).  C: Rescue of drd expression by 
DJ626 on a drd mutant background rescued neurodegeneration (left), unlike in sibling controls without the 
driver (right). 

Table S1. Loss of a PM in drdGD15915 knockdown flies with longer exposure to heat 
shock. 

Genotype Days of heat shock PM Present 
drdGD15915/Hsp70-gal4 7 6/6 
drdGD15915/Hsp70-gal4 8 4/4 
drdGD15915/Hsp70-gal4 9 4/4 
drdGD15915/Hsp70-gal4 10 6/6 
drdGD15915/Hsp70-gal4 11 3/5 
drdGD15915/Hsp70-gal4 12 2/7 
Hsp70-gal4/CyO 12 9/9 
drdGD3367/Hsp70-gal4 12 0/6 

The presence of the PM was scored after heat-shock induced drd RNAi for various amounts of time following 
eclosion.  Both male and female flies were examined.  Note that unlike the data presented in table 2, the UAS-
Dcr-2 transgene was not present in these flies, so that RNAi efficiency might be lower.  The final two rows of the 
table indicate negative controls lacking a drd-RNAi transgene and positive controls with the more effective 
drdGD3367 transgene. 
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