632,089 research outputs found

    Complex Grid Computing

    Full text link
    This article investigates the performance of grid computing systems whose interconnections are given by random and scale-free complex network models. Regular networks, which are common in parallel computing architectures, are also used as a standard for comparison. The processing load is assigned to the processing nodes on demand, and the efficiency of the overall computing is quantified in terms of the respective speed-ups. It is found that random networks allow higher computing efficiency than their scale-free counterparts as a consequence of the smaller number of isolated clusters implied by the former model. At the same time, for fixed cluster sizes, the scale free model tend to provide slightly better efficiency. Two modifications of the random and scale free paradigms, where new connections tend to favor more recently added nodes, are proposed and shown to be more effective for grid computing than the standard models. A well-defined correlation is observed between the topological properties of the network and their respective computing efficiency.Comment: 5 pages, 2 figure

    Teaching the Grid: Learning Distributed Computing with the M-grid Framework

    No full text
    A classic challenge within Computer Science is to distribute data and processes so as to take advantage of multiple computers tackling a single problem in a simultaneous and coordinated way. This situation arises in a number of different scenarios, including Grid computing which is a secure, service-based architecture for tackling massively parallel problems and creating virtual organizations. Although the Grid seems destined to be an important part of the future computing landscape, it is very difficult to learn how to use as real Grid software requires extensive setting up and complex security processes. M-grid mimics the core features of the Grid, in a much simpler way, enabling the rapid prototyping of distributed applications. We describe m-grid and explore how it may be used to teach foundation Grid computing skills at the Higher Education level and report some of our experiences of deploying it as an exercise within a programming course

    Condor services for the Global Grid:interoperability between Condor and OGSA

    Get PDF
    In order for existing grid middleware to remain viable it is important to investigate their potentialfor integration with emerging grid standards and architectural schemes. The Open Grid ServicesArchitecture (OGSA), developed by the Globus Alliance and based on standard XML-based webservices technology, was the first attempt to identify the architectural components required tomigrate towards standardized global grid service delivery. This paper presents an investigation intothe integration of Condor, a widely adopted and sophisticated high-throughput computing softwarepackage, and OGSA; with the aim of bringing Condor in line with advances in Grid computing andprovide the Grid community with a mature suite of high-throughput computing job and resourcemanagement services. This report identifies mappings between elements of the OGSA and Condorinfrastructures, potential areas of conflict, and defines a set of complementary architectural optionsby which individual Condor services can be exposed as OGSA Grid services, in order to achieve aseamless integration of Condor resources in a standardized grid environment

    Using a desktop grid to support simulation modelling

    Get PDF
    Simulation is characterized by the need to run multiple sets of computationally intensive experiments. We argue that Grid computing can reduce the overall execution time of such experiments by tapping into the typically underutilized network of departmental desktop PCs, collectively known as desktop grids. Commercial-off-the-shelf simulation packages (CSPs) are used in industry to simulate models. To investigate if Grid computing can benefit simulation, this paper introduces our desktop grid, WinGrid, and discusses how this can be used to support the processing needs of CSPs. Results indicate a linear speed up and that Grid computing does indeed hold promise for simulation
    corecore