
Using a Desktop Grid to Support Simulation Modelling

Navonil Mustafee and Simon J E Taylor
Centre for Applied Simulation Modelling

School of Information Systems, Computing and Mathematics
Brunel University

Uxbridge, Middlesex, UB8 3PH, UK.
navonil.mustafee@brunel.ac.uk, simon.taylor.brunel.ac.uk

Abstract. Simulation is characterized by the
need to run multiple sets of computationally
intensive experiments. We argue that Grid
computing can reduce the overall execution time
of such experiments by tapping into the typically
underutilized network of departmental desktop
PCs, collectively known as desktop grids.
Commercial-off-the-shelf simulation packages
(CSPs) are used in industry to simulate models.
To investigate if Grid computing can benefit
simulation, this paper introduces our desktop
grid, WinGrid, and discusses how this can be
used to support the processing needs of CSPs.
Results indicate a linear speed up and that Grid
computing does indeed hold promise for
simulation.

Keywords. Grid, Desktop grid, WinGrid,
Simulation experimentation, COTS Simulation
Packages.

1. Introduction

Grid computing seeks to achieve the secured,
controlled and flexible sharing of resources (for
example, multiple computers, software and data)
among various dynamically created virtual
organizations1[7]. These virtual organizations are
generally setup for collaborative problem solving
and access to grid resources are limited to those
who are part of the project. The creation of an
application that can benefit from Grid computing
(faster execution speed, linking of geographically
separated resources, interoperation of software,
etc.) typically requires the installation of
complex supporting software and an in-depth
knowledge of how this complex supporting
software works [10].

1 A group of individuals and/or institutions engaged in some joint
task who share resources by following clearly stated sharing rules.
These rules define what is shared, who is allowed to share and the
conditions under which sharing occurs.

Simulation modelling is a field that can
potentially benefit from Grid computing.
Consider a model that takes ten minutes to run.
If a modeller wishes to perform six experiments
then the modeller will have to wait one hour plus
setting up time for each experiment. If each of
these experiments require ten replications, then
the total experimentation time will be ten hours.
Some models require much experimentation and
some models take longer to run. The
consequence of this is that for some simulation
projects, experimentation can take a considerable
length of time (or only be partially done). It
appears that simulation modelling should be able
to benefit from the processing power provided by
Grid computing techniques.

We consider this from the viewpoint of the user
of COTS Simulation Packages (CSPs). CSPs are
visual interactive modelling software used by
many practitioners in the practice of simulation
modelling. These include Arena, Automod,
Promodel, Simul8, Witness, etc. We use the
term as a convenient way to refer to these
packages. These CSPs are typically standalone
packages that run on a single desktop PC on the
Windows operating system. Users of CSPs tend
to be skilled in simulation modelling and not
computer science (as many users of Grid
computing are). Vendors of CSPs consequently
change the functionality of their CSPs on an
incremental basis. Major possible changes to
their packages are often prohibitively costly and
do not have a guaranteed return on investment
(ROI). Grid support for CSPs must therefore
take into account that these packages are
windows-based, their users are specialists in
simulation modelling and not computing and any
technological solution must be developed with
little or no change to the CSP.

The paper is structured as follows. In section 2
we review the relevant current approaches to
Grid computing and the notion of Desktop Grids.

557

Authorized licensed use limited to: Brunel University. Downloaded on December 23, 2009 at 04:33 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Section 3 introduces our Desktop Grid system
called WinGrid. Section 4 discusses how we
used WinGrid to “Grid-enable” the CSP Simul8
and a simulation application. Section 5 presents
the results of this and shows the speed up that we
obtained using a small number of desktop PCs.
Section 6 considers the implication of this and
draws the paper to a close. Note that we are
aware of some CSPs that have specialist
experimentation tools that make use of multiple
computers. However, this research considers
how CSPs might make use of such resources via
the use of generally available Grid computing
software targeted at desktop users.

2. Desktop Grids

While much of Grid computing is focussed on
meeting the needs of large virtual organizations,
Desktop Grid Computing or Desktop Grids
addresses the potential of harvesting the idle
computing resources of desktop PCs [4]. These
resources can be part of the same local area
network (LAN) or can be geographically
dispersed and connected via a wide area network
such as the Internet. Studies have shown that
desktop PCs can be under utilized by as much as
75% of the time [12]. Given the number of
desktop computers across the world, this
represents an enormous computing resource.
The immediate implication of this is that
software applications can potentially run
substantially faster. In enterprises, this also
means that the ROI of enterprise computing
resources can also be potentially increased.

Two principal types of desktop grids have
emerged. These are Public Resource Computing
and Enterprise Desktop Grid Computing. Both
these are based on variants of the master/workers
distributed computing architecture [3]. In such a
model a user launches an application on a master
computer that is responsible for allotting work
generated by the application to the available
worker computers for processing. The individual
results are returned by the workers to the master
for compilation by the application and
presentation to the user.

2.1 Public Resource Computing

Public-resource computing (PRC) refers to the
utilization of desktop grids comprising millions
of desktop computers primarily to do scientific

research [1]. Berkeley Open Infrastructure for
Network Computing (BOINC) [19] is the most
widely used desktop grid application that
supports scientific projects with diverse
objectives such as searching for evidence of
extraterrestrial intelligence, studying climate
change, improvement in the design of particle
accelerators, finding cures for human diseases
and searching for gravitational waves from
space. Non-BOINC based projects use their own
software to facilitate research with similar
objectives, for example, finding a cure to cancer
[14], understanding protein folding [13] and
computing mersenne prime numbers [8]. The
participants of PRC projects are volunteers who
register with one or more such projects and
install the required desktop grid software. This
software then contacts the central project servers
and downloads work units for processing (in case
of BOINC it also downloads project specific
executable code as BOINC is a general purpose
PRC client). The time it takes to complete the
execution of a work unit and return back the
result depends, among other things, on the
machine hardware, the amount of time a PC is
left running and user preferences. The
volunteers are themselves unable to use the
underlying desktop grid infrastructure, of which
they themselves are part of, to perform their own
computations.

2.2 Enterprise-wide Desktop Grid
Computing

We use the term Enterprise-wide Desktop Grid
Computing (EDGC) to refer to a grid
infrastructure that is confined to an institutional
boundary, where the spare processing capacity of
an enterprise’s desktop PCs are used to support
the execution of the enterprise’s applications.
User participation in such a grid is not usually
voluntary and is governed by enterprise policy.
Applications like CONDOR [11], Platform LSF
[15], DCGrid [6] and GridMP [18] are all
examples of EDGC. Unlike the PRC model these
applications usually allow users to submit jobs
for processing.

2.3 Desktop Grids and CSPs

How can a desktop grid support the needs of
CSP experimentation? To recap, our aim is to
create a system that takes into account that these
packages are windows-based, their users are
specialists in simulation modelling and not

558

Authorized licensed use limited to: Brunel University. Downloaded on December 23, 2009 at 04:33 from IEEE Xplore. Restrictions apply.

computing and any technological solution must
be developed with little or no change to the CSP.

Building on PRC and EDGC, one possibility is
to “bundle” the CSP along with each desktop
grid worker. Thus, whenever a desktop grid
worker is started the CSP is also loaded. In an
enterprise-wide desktop grid the worker usually
runs in a “sandbox”. We call this sandbox the
Desktop Grid Virtual Machine (DGVM) and this
provides logically separate, secure execution
environment for both the host and guest
processes.

In DCGrid for example, the DGVM is called the
Entropia Virtual Machine (EVM) and it wraps
interpreters like cmd.exe, perl and Java Virtual
Machine to prevent unauthorized access to a
computer [2]. Thus, it might be possible to
include a CSP installation inside the EVM and
offer it as part of an Entropia installation. In this
case the master will need to send the data files
associated with the simulation and a script file to
trigger the CSP execution in the worker DGVM.
The simulation results would be collected in a
file, which would then be sent back to the
master. The problem with this approach is that it
would require major changes to the CSP
(integrating CSP into a DGVM).

An alternative solution would be to install the
CSP in the worker nodes as a normal application
and then have the master communicate directly
with that application. The drawback with this is
that the sandbox security mechanism which is
present in most EDGC approaches would have to
be forfeited. However, as simulations are
created by trusted employees running trusted
software within the bounds of a firewalled
network, security in this open access scheme
could be argued as being irrelevant (i.e. if it were
an issue then it is an issue with the wider security
system and not the desktop grid).

Let us now consider our approach to supporting
simulation with desktop grids by introducing our
WinGrid.

3. WinGrid: A Desktop Grid for
Windows

WinGrid is a distributed middleware application
written in Java that is based on the desktop grid
master/workers architecture and is shown in Fig.

1. As can be seen, WinGrid consists of four
different parts: the manager application (MA),
the WinGrid Job Dispatcher (WJD), the worker
application (WA) and the WinGrid Thin Client
(WTC). The MA runs on the manager computer
(the application user’s computer) and is software
written specifically for the management of the
application running over the desktop grid (in our
case study this is Excel). The MA interacts with
the WJD also running on the master computer
and passes work to, and receives results from, the
WJD. The WAs and WTCs run on each worker
computer. The WJD sends and receives work to
and from the WTCs. The WTCs in turn send and
receive work to and from their WA. The WAs
are unmodified application software connected
via a COM interface with the WTCs. The WTC
is also responsible for advertising and monitoring
local resources, accepting new jobs from the
master process and returning back the results,
and provides an interface through which the
desktop user can set his preferences (when guest
jobs are to be run, applications to share etc.). As
seen in Fig. 1 below, the user submits a job
through the MA (1), which in turn interacts with
the WJD process (2) in the manager computer to
send work (4) to the WinGrid workers and their
WTCs (3). The WTC pass this work to their WA
for processing (5) and returns the result to the
WJD (6). The results of all the sub jobs are
communicated back to the MA which then
collates the results and presents it to the user.

Figure 1. WinGrid nodes running a user job

WinGrid Job
Dispatcher

(2)

Manager
Application

(1)

Worker
Application

(5)

.

WinGrid
Thin Client

(3)(6)

(4)

(6)

(4)

WinGrid
Thin Client

(3)

Worker
Application

(5)

.

559

Authorized licensed use limited to: Brunel University. Downloaded on December 23, 2009 at 04:33 from IEEE Xplore. Restrictions apply.

4. Case Study: Simul8-WinGrid
Integration

For a desktop grid to support experimentation
with a CSP it must be able to access the CSP and
we require (1) CSP accessibility through desktop
grids software, (2) an interface which allows us
to access the internal functionality of a CSP, for
example, starting and stopping a simulation,
changing parameter values, retrieving results
etc., (3) an interface to desktop grid which allows
us to receive and send information through the
network, (4) a mechanism which interacts with
both the CSP and desktop grid interface, (5) a
standard way to represent the batch simulation
experiments which would be submitted to the
desktop grids, and (6) a mechanism which can
read the job submission file, extract parameters
of each simulation and collectively present the
results. Of these, (2) and (3) are provided by
most CSPs and desktop grids respectively. (1, 4,
5, 6) will need some implementation specific to
the CSP and the desktop grid in question.

Simul8 is a discrete-event CSP that enables users
to rapidly construct accurate, flexible and robust
simulations using an easy-to-use visual
modelling interface [5]. In order to grid-enable
Simul8 we have integrated it with WinGrid using
the Component Object Model (COM). COM is a
Microsoft technology that allows different
software components to communicate with each
other by means of interfaces [9]. Simul8 provides
a Windows COM interface that can be used from
within any COM-compliant language to “drive”
Simul8 [16].

Each simulation model is different and we need
to make only model-related COM calls. A
custom built Simul8 adapter wraps the code
necessary to interact with the model in question.
This adapter (code) will be used by each
WinGrid client along with the simulation file
(data) to interact with Simul8 and perform the
required experiments. In the actual
implementation the WinGrid job dispatcher does
not explicitly transport code and data over the
network because each WinGrid client has access
to a shared drive (Windows OS takes care of this
implicitly).

For the purpose of this paper we define a Simul8
job as a collection of experiments performed on a
Simul8 model. The experiment parameters are
entered by the user through Microsoft Excel

spreadsheet (Fig. 2). We choose Excel because it
has well documented COM interface which
allows us to easily integrate it with WinGrid and
is a technology familiar with simulation
modellers. The user submits the Simul8 job
(Excel spreadsheet) by invoking the job
dispatcher, which in turn reads the file and
distributes the experiments between the nodes.
As soon as each result is reported back to the job
dispatcher it is conveyed to the user through the
Excel interface.

Figure 2. Spreadsheet showing input
parameters (Cols. A-C) , results (Cols. D-I)
and the WinGrid node which executed the

simulation (Col. J)

Since WinGrid is written Java (a non-COM
compliant language), we have used Java Native
Interface technology [17] for communication
between Excel Adapter, WinGrid and the Simul8
Adapter. Fig. 3 shows the architecture of the CSP
and WinGrid.

5. Experiments and Results

To demonstrate the potential of achieving a
speedup when using CSP over WinGrid, we have
used the airport simulation demonstration that
comes as part of the standard Simul8 distribution
to conduct performance tests. This model accepts
input parameters such as max number of planes
allowed to circle the airport and the maximum
arrival rate per hour. The performance was
measured in terms of the time taken to execute
50, 100, 150 and 200 experimentations of the
model. In both standalone and 4-node WinGrid
environments we used the same parameter
values. An Excel spreadsheet similar to the one
shown in Fig. 2 was used to automate the

560

Authorized licensed use limited to: Brunel University. Downloaded on December 23, 2009 at 04:33 from IEEE Xplore. Restrictions apply.

running of the standalone simulation. Each
experiment was run to a preset simulation time.

Figure 3. Interactions between WinGrid nodes
during simulation run

All experiments were performed on Dell Inspiron
laptops running Microsoft Windows XP OS with
1.73GHz processors and 1GB memory,
connected through a 100Mbps CISCO switch.
The results obtained are shown below.

0
200
400
600
800

1000
1200
1400
1600

50 100 150 200

Experiment Runs

Ex
ec

ut
io

n
Ti

m
e

(in
 m

in
s)

Single computer execution

4-node WinGrid execution

Figure 4. Total time taken to execute
simulation experiments

As can be seen in Fig. 4, the 4-node WinGrid
was able to complete all its experiments

approximately 4 times faster when compared to
standalone execution. Note that this assumes
that all four computers are dedicated to this task.
In a “real” office environment this might not be
the case. However, with careful management
this speedup is not at all unrealistic.

6. Conclusion

Studies have shown that desktop PCs remain
vastly underutilized in an organizational setting
and desktop grids give us an opportunity to
utilize these otherwise untapped resources to
perform compute intensive and repetitive jobs.
Simulation modelling stands to benefit through
adoption of this technology. Simulations in
industry are typically created using a CSP and
any desktop grid solution which supports a CSP
is expected to appeal to them. WinGrid, unlike
other desktop grids, provides architecture for
application level CSP integration with the
underlying grid infrastructure. WinGrid
therefore seeks to reduce the time taken to
simulation experimentation by sharing the
processing load across many desktop computers.

Future work in this area will involve WinGrid
integration with other Windows applications (we
have also successfully run Monte Carlo
simulations in multiple instances of Excel
spreadsheets following a similar approach). We
plan to incorporate features like user activity
detection and check pointing onto the WTC and
job migration, fault tolerance, workflows into the
WJD. Some of these features will help us to
make WinGrid a testbed for running CSP based
distributed simulations.

Acknowledgements

The authors would like to thank Dr. Mark Elder
(founder and CEO of SIMUL8 Corporation) for
providing the Simul8 licenses and their generous
on-going support. Part of this work was funded
by the WestFocus GridAlliance ICT programme.

References

[1] Anderson D.P. BOINC: a system for public-
resource computing and storage. In:
Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing;
2004 November; 2004.p.4-10.

Excel Adapter

Excel

Experiment
Parameter File

WinGrid Job
Dispatcher

JNI calls

COM calls

COM Interface

Simul8 CSP

Simul8 Adapter

Airport Model

WinGrid Thin
Client

COM Interface

JNI calls

COM calls

Simul8 CSP

Simul8 Adapter

Airport Model

WinGrid Thin
Client

COM Interface

JNI calls

COM calls

Network
Communication

..

561

Authorized licensed use limited to: Brunel University. Downloaded on December 23, 2009 at 04:33 from IEEE Xplore. Restrictions apply.

[2] Calder B, Chien A.A, Wang J, Yang D. The
entropia virtual machine for desktop grids.
In: Proceedings of the 1st ACM/USENIX
international conference on Virtual execution
environments; 2005 June 11-12; Chicago, IL,
USA ; 2005.p.186-196.

[3] Chakravarti A.J, Baumgartner G, Lauria M.
Application-specific scheduling for the
organic grid. In: Proceedings of the Fifth
IEEE/ACM International Workshop on Grid
Computing; 2004 November; 2004.p.146-
155.

[4] Choi S, Baik M, Hwang C, Gil J, Yu H.
Volunteer Availability based Fault Tolerant
Scheduling Mechanism in Desktop Grid
Computing Environment. In: Proceedings of
the 3rd IEEE International Symposium on
Network Computing and Applications; 2004
August; 2004.p. 366-371.

[5] Concannon K.H, Hunter K.I, Tremble J.M.
SIMUL8-planner simulation-based planning
and scheduling. In: Proceedings of the 35th

conference on Winter simulation; 2003
December; New Orleans, Louisiana;
2003.p.1488-1493.

[6] Entropia Inc; 2006. http://www.entropia.com/
[02/01/2006].

[7] Foster I, Kesselman C, Tuecke S. The
Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal
of High Performance Computing
Applications 2001; 15(3):200-222.

[8] George Woltman. GIMPS; 2006.
http://www.mersenne.org [02/06/2006].

[9] Gray D.N, Hotchkiss J, LaForge S, Shalit A,
Weinberg T. Modern languages and
Microsoft's component object model.
Communications ACM 1998; 41(5):55-65.

[10] Jaesun H, Daeyeon P. A lightweight
personal grid using a supernode network.
In: Proceedings of the 3rd International
Conference on Peer-to-Peer Computing;
2003 Sept 1-3; 2003.p. 168-175.

[11] Litzkow M, Livny M, Mutka M. Condor -
A Hunter of Idle Workstations. In:
Proceedings of the 8th International

Conference of Distributed Computing
Systems; 1988 June. 1988.p.104-111.

[12] Mutka M.W . Estimating capacity for
sharing in a privately owned workstation
environment. IEEE Transactions on
Software Engineering 1992; 18(4):319-328.

[13] Pande V , Stanford University.
Folding@Home; 2006. http://folding.
stanford.edu/ [02/06/2006].

[14] Parabon Computation Inc. Compute Against
Cancer; 2006. http://www.computeagainst
cancer.org/ [02/06/2006] .

[15] Platform Computing; 2006.
http://www.platform.com/ [02/06/2006].

[16] Simul8 Corporation. Simul8: Manual and
Simulation Guide. 2003.

[17] Sun Microsystems Limited. Java Native
Interface (2003).
http:/java.sun.com/j2se/1.4.2/docs/guide/jni
[02/06/2006] .

[18] United Devices Inc; 2006. http://www.ud.
com/ [02/01/2006].

 [19] University of California. Berkeley Open
Infrastructure for Network Computing;
2006. http://boinc.berkeley.edu/
[02/06/2006] .

562

Authorized licensed use limited to: Brunel University. Downloaded on December 23, 2009 at 04:33 from IEEE Xplore. Restrictions apply.

