352 research outputs found

    Learning Local Receptive Fields and their Weight Sharing Scheme on Graphs

    Full text link
    We propose a simple and generic layer formulation that extends the properties of convolutional layers to any domain that can be described by a graph. Namely, we use the support of its adjacency matrix to design learnable weight sharing filters able to exploit the underlying structure of signals in the same fashion as for images. The proposed formulation makes it possible to learn the weights of the filter as well as a scheme that controls how they are shared across the graph. We perform validation experiments with image datasets and show that these filters offer performances comparable with convolutional ones.Comment: To appear in 2017, 5th IEEE Global Conference on Signal and Information Processing, 5 pages, 3 figures, 3 table

    On the Decoding of Polar Codes on Permuted Factor Graphs

    Full text link
    Polar codes are a channel coding scheme for the next generation of wireless communications standard (5G). The belief propagation (BP) decoder allows for parallel decoding of polar codes, making it suitable for high throughput applications. However, the error-correction performance of polar codes under BP decoding is far from the requirements of 5G. It has been shown that the error-correction performance of BP can be improved if the decoding is performed on multiple permuted factor graphs of polar codes. However, a different BP decoding scheduling is required for each factor graph permutation which results in the design of a different decoder for each permutation. Moreover, the selection of the different factor graph permutations is at random, which prevents the decoder to achieve a desirable error-correction performance with a small number of permutations. In this paper, we first show that the permutations on the factor graph can be mapped into suitable permutations on the codeword positions. As a result, we can make use of a single decoder for all the permutations. In addition, we introduce a method to construct a set of predetermined permutations which can provide the correct codeword if the decoding fails on the original permutation. We show that for the 5G polar code of length 10241024, the error-correction performance of the proposed decoder is more than 0.250.25 dB better than that of the BP decoder with the same number of random permutations at the frame error rate of 10−410^{-4}

    An Algebra of Hierarchical Graphs

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects

    Hierarchical models for service-oriented systems

    Get PDF
    We present our approach to the denotation and representation of hierarchical graphs: a suitable algebra of hierarchical graphs and two domains of interpretations. Each domain of interpretation focuses on a particular perspective of the graph hierarchy: the top view (nested boxes) is based on a notion of embedded graphs while the side view (tree hierarchy) is based on gs-graphs. Our algebra can be understood as a high-level language for describing such graphical models, which are well suited for defining graphical representations of service-oriented systems where nesting (e.g. sessions, transactions, locations) and linking (e.g. shared channels, resources, names) are key aspects

    Exploiting a graphplan framework in temporal planning

    Get PDF
    Graphplan (Blum and Furst 1995) has proved a popular and successful basis for a succession of extensions. An extension to handle temporal planning is a natural one to consider, because of the seductively time-like structure of the layers in the plan graph. TGP (Smith and Weld 1999) and TPSys (Garrido, OnaindĂ­a, and Barber 2001; Garrido, Fox, and Long 2002) are both examples of temporal planners that have exploited the Graphplan foundation. However, both of these systems (including both versions of TPSys) exploit the graph to represent a uniform flow of time. In this paper we describe an alternative approach, in which the graph is used to represent the purely logical structuring of the plan, with temporal constraints being managed separately (although not independently). The approach uses a linear constraint solver to ensure that temporal durations are correctly respected. The resulting planner offers an interesting alternative to the other approaches, offering an important extension in expressive power

    An Algebra of Hierarchical Graphs and its Application to Structural Encoding

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects. In particular, we propose the use of our graph formalism as a convenient way to describe configurations in process calculi equipped with inherently hierarchical features such as sessions, locations, transactions, membranes or ambients. The graph syntax can be seen as an intermediate representation language, that facilitates the encodings of algebraic specifications, since it provides primitives for nesting, name restriction and parallel composition. In addition, proving soundness and correctness of an encoding (i.e. proving that structurally equivalent processes are mapped to isomorphic graphs) becomes easier as it can be done by induction over the graph syntax
    • 

    corecore