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Abstract. We present our approach to the denotation and representation
of hierarchical graphs: a suitable algebra of hierarchical graphs and two
domains of interpretations. Each domain of interpretation focuses on
a particular perspective of the graph hierarchy: the top view (nested
boxes) is based on a notion of embedded graphs while the side view (tree
hierarchy) is based on gs-graphs. Our algebra can be understood as a
high-level language for describing such graphical models, which are well
suited for defining graphical representations of service-oriented systems
where nesting (e.g. sessions, transactions, locations) and linking (e.g.
shared channels, resources, names) are key aspects.

1 Introduction

As witnessed by a vast literature, graphs offer a convenient ground for the
specification and analysis of software systems. As an example, the use of graphs
as a suitable domain for the visualisation of a system specified by algebraic means
is pursued in various proposals, based on traditional Graph Transformation [15],
Bigraphical Reactive Systems [16], and Synchronised Hyperedge Replacement [13].

Despite their expressiveness and flexibility, the use of these formalisms to build
a graphical representation for an existing specification language involves two ma-
jor challenges. First, encoding system configurations (states), guaranteeing that
structural equivalence is preserved: i.e. equivalent (e.g. structurally congruent)
configurations are mapped into equivalent (e.g. isomorphic) graphs. Second, en-
coding system dynamics (e.g. behaviour, reconfigurations, model transformations,
refactorings), guaranteeing that the original semantics is respected.

Preserving structural equivalence has several advantages. It offers an intuitive
normal form representation for systems, and it allows us to reuse results and
techniques from graph theory for solving specific problems. In particular, the
soundness of the encoding is necessary to use graph transformation approaches [10]
to model dynamic aspects since (sub)graph isomorphism is at the base of the
rule matching mechanism.

The encoding of configurations given with an algebraic syntax (e.g. as in
process calculi) is facilitated by their structure (i.e. processes are terms) since it
can be defined inductively. In absence of an algebraic presentation for the language
under consideration, ad-hoc algebraic syntax must be developed if one wants to
benefit from structural induction in proofs, transformations or definitions. Still,
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most graph models are not equipped with algebraic syntax and those that exist
require advanced skills to deal with sophisticated models involving set-theoretic
definitions of graphs with interfaces (e.g. [15]) or complex type systems (e.g. [7]),
hampering definitions and proofs. Moreover, one encounters a severe drawback:
namely, the syntax of graph formalisms are often very different from the source
language and not provided with suitable primitives to deal with features that
commonly arise in algebraic specifications, like names (e.g. references, channels),
name restrictions (e.g. hiding, nonce generation) or hierarchical aspects (e.g.
ambients, scopes) in the case of process calculi. Identifying the right structure is
fundamental to provide scalable techniques.

Our goal is to define a simple flexible syntax for hierarchical models and to
develop a technique that simplifies the definition of graphical representations
of languages. We think that nesting and linking must be treated as first-class
concepts, conveniently represented with a suitable syntax that allows one to
express and exploit them. Nesting and linking are two key structural aspects that
arise repeatedly in computer systems: consider e.g. the structure of file systems,
composite diagrams, networks, membranes, sessions, transactions, locations,
structured state machines or XML files. In particular, nesting plays a fundamental
role for abstracting the complexity of a system by offering different levels of
detail. Various graphical models of nesting and sharing structures already exist
but (as we claim in [3–5]) none of them offer a simple, intuitive syntax.

Here, the gap between the different levels of abstraction at which algebraic
specifications and graphical models reside is filled by a simple algebra that enjoys
primitives for dealing with names, restriction, parallel composition and, most
importantly, nesting and that is equipped with a (sound and complete) set of
axioms equating two terms whenever they represent isomorphic graphs. Besides
facilitating the visual specification of configurations, the algebraic structure
facilitates definitions, transformations and proofs by induction.

Structure of this chapter. § 2 introduces the algebra of hierarchical graphs. § 3
presents our two models of hierarchical graphs. § 4 shows the expressiveness and
flexibility of our design algebra in modelling heterogeneous notations, ranging
from workflow languages to sophisticated process calculi.

2 The syntax of hierarchical graphs

We introduce our algebra of hierarchical graphs that we call designs. The algebraic
presentation of designs is mostly inspired by the graph algebra of [9].

Definition 1 (design). A design is a term of sort D generated by the grammar

D ::= Lx[G] G ::= 0 | x | l〈x〉 | G | G | (νx)G | D〈x〉

where l and L are drawn from vocabularies E and D of edge and design labels,
respectively, x is taken from a global set N of nodes and x ∈ N ∗ is a list of nodes.
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As a matter of notation, we let bxc denote the set of elements of a list x and,
conversely, dXe the vector of elements of an ordered set X. We overload | · | to
denote both the length of a list and the cardinality of a set.

Terms generated by G and D are meant to represent (possibly hierarchical)
graphs and “edge-encapsulated” hierarchical graphs, respectively. The syntax
has the following informal meaning: 0 represents the empty graph, x is a discrete
graph containing node x only, l〈x〉 is a graph formed by an l-labelled (hyper)edge
attached to nodes x (the i-th tentacle to the i-th node in x, sometimes denoted
by x[i]), G | H is the graph resulting from the parallel composition of graphs
G and H (their disjoint union up to shared nodes), (νx)G is the graph G after
making node x not visible from the outside (borrowing nominal calculus jargon
we say that the node x is restricted), and D〈x〉 is a graph formed by attaching
design D to nodes x (the i-th node in the interface of D to the i-th node in x).

A term Lx[G] is a design labelled by L, with body graph G whose nodes x are
exposed in the interface. To clarify the exact role of the interface of a design, we
can use a programming metaphor: a design Lx[G] is like a procedure declaration
where x is the list of formal parameters. Then, term Lx[G]〈y〉 represents the
application of the procedure to the list of actual parameters y; of course, in this
case the lengths of x and y must be equal (more precisely, the applicability of a
design to a list of nodes must satisfy other requirements to be detailed later in
the definition of well-formedness). In the following, we shall often write L[G]〈y〉
as a shorthand for Ly[G]〈y〉.

Restriction (νx)G acts as a binder for x in G and similarly Lx[G] binds x in
G. As usual, restrictions and interfaces lead to the notion of free nodes.

Definition 2 (free nodes). The free nodes of a design or a graph are denoted
by the function fn(·), defined as follows

fn(0) = ∅ fn(x) = x
fn(l(x)) = bxc fn(G | H) = fn(G) ∪ fn(H)

fn((νx)G) = fn(G) \ {x} fn(D〈x〉) = fn(D) ∪ bxc
fn(Lx[G]) = fn(G) \ bxc

Example 1. Let a, b ∈ E , A ∈ D, u, v, w, x, y ∈ N . We write and depict in Fig. 1
some terms of our algebra, where for helping intuition an informal, appealing
visual notation is preferred to the formal underlying graphs that will be described
in [4]. Nodes are represented by circles, edges by small rounded boxes, and designs
by large shaded boxes with a top bar. The first tentacle of an edge is represented
by a plain arrow with no head, while the second one is denoted by a normal arrow.
In the particular examples only free nodes are annotated with their identities,
while restricted nodes are anonymous (no label). Note how the tentacles of a-
and b-labelled boxes attached to x and y do actually cross the interface and are
hence denoted by small black boxes in border of the A-labelled designs. This
does not happen for tentacles attached to w since it is shared node.

In practice, it is very frequent that one is interested in disciplining the use
of edge and design labels so to be attached only to a specific number of nodes
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Fig. 1. Some terms of the graph algebra and their informal visual notation

(possibly of specific sorts) or to contain graphs of a specific shape. To this aim it
is typically the case that: 1) nodes are sorted, in which case their labels take the
form x : s for x ∈ X the name and s ∈ S the sort of the node; 2) each label l ∈ E
(resp. L ∈ D) has a fixed rank denoted ar(l) ∈ S∗ (resp. ar(L) ∈ S∗); 3) designs
can be partitioned according to their top-level labels (i.e. the set of design labels
D can be seen as the set of sorts, with a membership predicate D : L that holds
whenever D = Lx[G] for some x and G).

We say that a design (or a graph) is well-typed if for each occurrence of a
typed operator Lx[G] we have that the (vectors of) types of x and L coincide, and
similarly for typed operators D〈x〉 and l(x). From now on, we restrict our attention
to well-formed designs: all the axioms are going to preserve well-formedness and
all the derived operators used for the encodings are well-formed.

Definition 3 (well-formedness). A well-typed design or graph is well-formed
if:

1. for each occurrence of design Lx[G] we have bxc ⊆ fn(G);
2. for each occurrence of graph Lx[G]〈y〉, the substitution x/y is a function.

Intuitively, the restriction on the mapping x/y allows x to account for matching
of nodes in the interface: distinct nodes in y must correspond to distinct nodes
in x (as the list x can contain repetitions).

In order to have a notion of “structurally equivalent” designs, the algebra
includes the structural graph axioms of [9] such as associativity and commutativity
for | with identity 0 (axioms DA1–DA3 in Definition 4) and name extrusion (DA4–
DA6). In addition, it includes axioms to α-rename bound nodes (DA7–DA8), an
axiom for making immaterial the addition of a node to a graph where that same
node is already free (DA9) and another one ensuring that global names are not
localised within hierarchical edges (DA10).

4



Definition 4 (design axioms). The structural congruence ≡D over well-formed
designs and graphs is the least congruence satisfying

G | H ≡ H | G (DA1) G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)
G | (H | I) ≡ (G | H) | I (DA2) Lx[G] ≡ Ly[G{y/x}] if byc ∩ fn(G) = ∅ (DA7)

G | 0 ≡ G (DA3) (νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)
(νx)(νy)G ≡ (νy)(νx)G (DA4) x | G ≡ G if x ∈ fn(G) (DA9)

(νx)0 ≡ 0 (DA5) Lx[z | G]〈y〉 ≡ z | Lx[G]〈y〉 if z 6∈ bxc (DA10)

where in axiom (DA7) the substitution is required to be a function (to avoid node
coalescing) and to respect the typing (to preserve well-formedness).

It is immediate to observe that structural congruence respects free nodes, i.e.
G ≡D H implies fn(G) = fn(H) for any G,H. Moreover, being ≡D a congruence,
we remark, e.g. that Lx[G] ≡D Lx[H] whenever G ≡D H.

One important aspect of our algebra is allowing the derivation of standard
representatives for the equivalence classes induced by ≡D.

Definition 5 (Normalized form). A term G is in normalised form if it is 0
or it has the shape (for some n+m+ p+ q ≥ 1 and suitable nodes xj, zk and
edges lh〈vh〉, Liyi

[Gi]〈wi〉):

(νx1) . . . (νxm)( z1 | . . . | zn | l1〈v1〉 | . . . | lp〈vp〉 | L1
y1

[G1]〈w1〉 | . . . | Lqyq
[Gq]〈wq〉 )

where all terms Gi are in normalised form, all nodes xj are pairwise distinct, all
nodes zk are pairwise distinct and letting X = {x1, . . . , xm} and Z = {z1, . . . , zn}
we have X ⊆ Z, fn(G) = Z \X and fn(Liyi

[Gi]〈wi〉) = Z for all i = 1...q .

Proposition 1. Any term G admits a ≡D-equivalent term norm(G) in nor-
malised form.

Roughly, in norm(G) the top-level restrictions are grouped to the left, and
all the global names zk are made explicit and propagated inside each single
component Liyi

[Gi]〈wi〉. Up to α-renaming and to nodes and edges permutation,
the normalised form is actually proved to be unique.

3 The models of hierarchical graphs

In this section we present our two models of hierarchical graphs.

3.1 Top-view model

In [4] we have defined a new, suitable notion of hierarchical graphs with interface:
roughly they extend ordinary hyper-graphs with the possibility to embed (recur-
sively) a hierarchical graph within each edge, thus inducing a layered structure of
nodes and edges. Notably, the nodes defined in one layer are also visible below in
the hierarchy (but not above). The main result of [4] is to show that the encoding
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of design terms in hierarchical graphs is surjective and that the axiomatisation
of the design algebra is sound and complete w.r.t. the encoding. Moreover, in the
presence of flattening- or extrusion-axioms (see § 4.1) the encoding can be slightly
modified so to extend the validity of main results. The drawing of hierarchical
graphs as defined in [4] is along the informal drawing seen in Fig. 1: to some
extent they illustrate a top view of the system.

We first present the set of plain graphs and graph layers, upon which we build
our novel notion of hierarchical graphs. In the following, N and A = AE ] AD
denote the universe of nodes and edges, respectively, for A indexed over the
vocabularies E and D.

Definition 6 (graph layer). The set L of graph layers is the set of tuples
G = 〈NG, EG, tG, FG〉 where EG ⊆ A is a (finite) set of edges, NG ⊆ N a (finite)
set of nodes, tG : EG → N∗G a tentacle function, and FG ⊆ NG a set of free nodes.
The set P of plain graphs contains those graph layers G such that EG ⊆ AE .

Thus, we just equipped the standard notion of hypergraph with a chosen set of
free nodes, intuitively denoting those nodes that are available to the environment,
mimicking free names of our algebra. Next, we build the set of hierarchical graphs.

Definition 7 (hierarchical graph). The set H of hierarchical graphs is the
smallest set3 containing all the tuples G = 〈NG, EG, tG, iG, xG, rG, FG〉 where

1. 〈EG, NG, tG, FG〉 is a graph layer,
2. iG : EG ∩AD → H is an embedding function (we say iG(e) is the inner graph

of e ∈ EG ∩ AD),
3. xG : EG ∩ AD → N ∗ is an exposure function (xG(e) tells which nodes of

iG(e) are exposed and in which order), such that for all e ∈ EG ∩ AD
(a) bxG(e)c ⊆ NiG(e) \FiG(e), i.e. free nodes of inner graphs are not exposed;
(b) |xG(e)| = |tG(e)|, i.e. exposure and tentacle functions have the same

arity;4

(c) ∀n,m ∈ N if xG(e)[n] = xG(e)[m] then tG(e)[n] = tG(e)[m], i.e. it is not
possible to expose a node twice without attaching it to the same external
node.

4. rG : EG ∩AD → (NG ↪→ N ) is a renaming function (rG(e) tells how nodes
NG are named in iG(e)), such that for all e ∈ EG ∩AD rG(e)(NG) = FiG(e),
i.e. the nodes of the graph are (after renaming) the free nodes of inner layers.

Thus, a hierarchical graph G is either a plain graph, or it is equipped with
a function associating to each edge in EG ∩ AD another graph. The tuple
〈NG, EG, tG, iG〉 recalls the layered model of hierarchical graphs of [11], with iG

3 Taking the least set we exclude cyclic dependencies from containment, like a graph
being embedded in one of its edges.

4 We shall not put any emphasis on the typing of the graph, but clearly if the set
of nodes is many sorted an additional requirement should force the exposure and
tentacle functions to agree on the node types.
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Fig. 2. A hierarchical graph (left) and its simplified representation (right)

being the function that embeds a graph (of a lower layer) inside an edge. Node
sharing is introduced by the graph component FG and the renaming function rG,
inspired by the graphs with (cospan-based) interfaces of [15]. In practice, we shall
often assume that rG(e) (when defined) is the ordinary inclusion: the general
case is useful for embedding (and reuse) graphs without renaming their nodes.

Example 2. Consider the last term of Example 1 and its informal graphical
representation on Fig. 1 (right). Its actual interpretation as a hierarchical graph
appears in Fig. 2 (left) decorated with the most relevant annotations (the tentacle,
exposition and renaming functions for the two hierarchical edges). As witnessed
by Fig. 2 (right), we can introduce convenient shorthands, such as dotted lines
for mapping parameters, node-sharing represented by unique nodes and tentacles
crossing the hierarchy levels, dropping the order of tentacles in favour of graphical
decorations (missing or different heads and tails) to get a simplified notation that
still retains all the relevant information. Note that such a simplified representation
is very close to the informal notation shown in Fig. 1.

The above example should highlight that the algebra is providing a simple
syntax that hides the complexities of our hierarchical model. The syntax can
then be used in definitions, proofs and transformations in a much more friendly
way than would be the case when working directly with the actual graphs.

We now present the interpretation of terms as graphs. In the definition below
we assume that subscripts refer to the corresponding encoded graph. For instance,
JGK = 〈NG, EG, tG, iG, xG, rG, FG〉.
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Definition 8 (graph interpretation). The encoding J·K, mapping well-formed
terms into graphs, is the function inductively defined as

JxK = 〈{x}, ∅,⊥,⊥,⊥,⊥, {x}〉 Jl〈x〉K = 〈bxc, {e′},⊥,⊥,⊥,⊥, bxc〉
JG | HK = JGK⊕ JHK J0K = 〈∅, ∅,⊥,⊥,⊥,⊥, ∅〉
J(νx)GK = 〈NG, EG, tG, iG, xG, rG, FG \ x〉

JLx[G]〈y〉K = 〈NG, {e}, e 7→ y, e 7→ JGK⊕ JbycK, e 7→ x, e 7→ idN , (FG \ bxc) ∪ byc〉

where e′ ∈ AE and e ∈ AD, ⊥ denotes the empty function, and G ⊕ H is a
graph composition operation that build the disjoint union of G and H up to their
common free nodes (see [4] for the full definition).

The encoding into (plain) graphs of the empty design, isolated nodes and
single edges is trivial. Node restriction consists of removing the restricted node
from the set of free nodes. The encoding of the parallel composition is as expected:
a disjoint union of the corresponding hierarchical graphs up to common free
nodes, plus a possible saturation of the sub-graphs with the nodes now appearing
in the top graph layer. A hierarchical edge (last two rows) is basically a graph
with a single edge (which is mapped to the corresponding body graph) and a
copy of the free nodes of the body graph (properly mapped to the corresponding
copies in the body), while adding the names byc among the free ones.

The main result in [4] shows that the encoding is sound and complete, meaning
that equivalent terms are mapped to isomorphic graph (and vice versa).

Theorem 1 (cf. [4]). Let G1, G2 be well-formed terms generated by the design
algebra. Then, G1 ≡d G2 if and only if JG1K is isomorphic to JG2K.

Moreover, the encoding is surjective.

Proposition 2 (cf. [4]). Let G be a graph. Then, there exists a well-formed
term G generated by the design algebra such that G is isomorphic to JGK.

3.2 Side-view model

The graphs-within-edges model corresponds, to some extent, to the top-view
of the system. Another possibility is to take a side-view of the system, where
containment is traced by dependencies between items in different layers (analogous
to the representation of inheritance via arrows in UML class diagrams).

In [3] we have followed the side-view approach to interpret (a slight variation
of) the algebra in § 2 over a class of graphs already available in the literature,
called gs-graphs [14]. Roughly, gs-graphs are an extension of term-graphs [1]
tailored to many-sorted hypersignatures. Moreover, in the formalisation of the
model we have exploited the algebraic structure of gs-graph in terms of the
so-called gs-monoidal theories [8]. Here we extend [3] to the design algebra of
Def. 1 that allows for a more general form of interface.

While we refer the interested reader to [3] for most technical details, the
main idea is to take a signature ΣD,E whose sorts correspond to node sorts and
whose operators correspond to the labels of edges. One additional sort • is also
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(op)
f ∈ Σu,v

f : u→ v
(id)

u ∈ S∗

idu : u→ u
(bang)

u ∈ S∗

!u : u→ ε
(dup)

u ∈ S∗

∇u : u→ uu

(sym)
u, v ∈ S∗

ρu,v : uv → vu
(seq)

t : u→ v t′ : v → w

t; t′ : u→ w
(par)

t : u→ v t′ : u′ → v′

t⊗ t′ : uu′ → vv′

Fig. 3. Inference rules of gs-monoidal theories

introduced to represent “locations” within the hierarchy. Formally, for nodes
sorted over S and edges labelled over D ∪ E , we let S• = S ∪ {•}, assuming that
• 6∈ S, and let ΣD,E denote the signature over S• defined as follows:

ΣD,E = {l : •, ar(l)→ ε | l ∈ E}∪{L : •, ar(L)→ •, ar(L) | L ∈ D}∪{νs : • → s | s ∈ S}

Thus, each hierarchical edge L ∈ D defines an operator L ∈ ΣD,E that takes
as arguments a location and the list of actual parameters and returns a location
and the list of formal parameters (i.e., it provides the inner graph with the
location where to reside and with a local environment). Of course, the type and
number of parameters corresponds to the rank of L. Plain edges l provide no
result (their co-arity is ε, the empty list)

By analogy with the well-known construction that given an ordinary signature
allows to define its initial model as the free cartesian category of terms over that
signature, starting from ΣD,E we can generate the so-called free gs-monoidal
theory GS(ΣD,E), that accounts for all the gs-graphs that can be defined over
the signature ΣD,E : differently from cartesian categories, gs-monoidal categories
account for the sharing of sub- terms/graphs and for the presence of hidden sub-
terms/graphs.

The expressions of interest are generated by the rules depicted in Fig. 3: they
are obtained from some basic (families of) terms by closing them with respect
to sequential (seq) and parallel (par) composition. By rule (op), the basic terms
include one generator for each operator of the signature: these can be considered
as the elementary bricks of our expressions, and conceptually correspond to
the hyperedges of the term graphs. All other basic terms define the wires that
can be used to build our graphs: the identities (id), the dischargers (bang), the
duplicators (dup) and the symmetries (sym).

Note that expressions t are “typed” over pairs of lists of sorts and that their
types determine the admissibility of sequential composition. For t : u→ v, with
respect to our intuitive view of systems, the source u expresses the top-interface of
t, that must be matched when embedding the expression in a larger context; the
target v expresses the inner-interface, that constrains the admissible sub-graphs
that can be placed below t; sequential composition represents the placing of one
system (e.g. t′ : v → w) below another (e.g. t; t′).

Definition 9 (gs-monoidal theory). Given a hypersignature Σ over a set of
sorts S, the associated gs-monoidal theory GS(Σ) is the category whose objects
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are the elements of S∗, and whose arrows are equivalence classes of gs-monoidal
terms, i.e., terms generated by the inference rules in Fig. 3 subject to the following
conditions

– identities and sequential composition satisfy the axioms of categories:
[identity] idu ; t = t = t ; idv for all t : u→ v;
[associativity] t1 ; (t2 ; t3) = (t1 ; t2) ; t3 whenever any side is defined,

– ⊗ is a monoidal functor with unit idε, i.e. it satisfies:
[functoriality] iduv = idu ⊗ idv, and
(t1 ⊗ t2) ; (t′1 ⊗ t′2) = (t1 ; t′1)⊗ (t2 ; t′2) whenever both sides are defined,
[monoid] t⊗ idε = t = idε ⊗ t t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2)⊗ t3

– ρ is a natural transformation, i.e. it satisfies:
[naturality] (t⊗t′) ; ρv,v′ = ρu,u′ ; (t′⊗t) for all t : u→ v and t′ : u′ → v′

and furthermore it satisfies:
[symmetry] (idu ⊗ ρv,w) ; (ρu,w ⊗ idv) = ρu⊗v,w ρu,v ; ρv,u = idu⊗v
ρε,u = ρu,ε = idu

– ∇ and ! satisfy the following axioms:
[unit] !ε = ∇ε = idε
[duplication] ∇u ; (idu ⊗∇u) = ∇u ; (∇u ⊗ idu) ∇u ; (idu⊗!u) = idu
∇u ; ρu,u = ∇u
[monoidality] ∇uv ; (idu ⊗ ρv,u ⊗ idv) = ∇u ⊗∇v !uv =!u⊗!v

We call a wiring any arrow of GS(Σ) which is obtained from the rules of Fig. 3
without using rule (op). Notice that the definition of wiring is well-given, because
any operator symbol introduced by rule (op) is preserved by all the axioms of the
theory. Notably, the wirings of GS(Σ) from u to v are in bijective correspondence
with the set of functions {k : |v| → |u| | u[k(i)] = v[i] for all 1 ≤ i ≤ |v|}, where
for an ordinal n ∈ N, we write n for the set {1, . . . , n}.

The key consequence is that when drawing gs-graphs, we can abstract away
from the way and order in which tentacles cross each other, because the axioms
of gs-monoidal theories establish the equivalence of all drawings representing the
same (set of) connections.

Then, each term G is translated to a gs-graph having • followed by (a
linearisation of) the sorts of free nodes fn(G) as source interface and the empty
list of sorts ε as target interface. To fix the set-to-list correspondence between
fn(G) and the source interface, we exploit the concept of an assignment.

Definition 10 (Assignment). An assignment is a function σ ∈
⋃
n∈N{f : n→

X × S | f is injective}. An assignment σ : n → X × S for a given n ∈ N is
uniquely determined by a list of nodes without repetitions (because it is injective),
namely σ(1), σ(2), . . . , σ(n): we shall often represent it this way and write x:s ∈ σ
as a shorthand for x : s belonging to img(σ), the image of σ.

In the following, by τ(σ) we denote τ(σ(1), σ(2), . . . , σ(n)), i.e., the sequence
of sorts of the nodes in img(σ). Furthermore, for a given list of nodes y ∈ (X×S)∗

and an assignment σ such that |y| ⊆ img(σ), we let kσy : |y| → |σ| be the function
such that kσy (i) = σ−1(y|i) for all 0 < i ≤ |y|.
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Definition 11 (GS-graph encoding). Given an assignment σ = x1:s1, . . . , xn:
sn and a term G with fn(G) ⊆ img(σ) such that all its bound variables carry
different names5 (also different from the names in σ), we define the gs-graph
JGKσ : •, τ(σ) → ε by structural induction as follows (assuming that ⊗ has
conventional precedence over ;):

– J0Kσ = Jx : sKσ =!•,τ(σ) : •, τ(σ)→ ε

– Jl〈y〉Kσ = id• ⊗ wir(kσy ) ; l : •, τ(σ) → ε, where the expression wir(kσy ) :
τ(σ)→ ar(l) is the wiring uniquely determined by kσy : |ar(b)| → |σ|.

– JLx[G]〈y〉Kσ = id•⊗∇τ(σ) ; (id•⊗wir(kσy ) ; L)⊗ idτ(σ) ; JGKx,σ : •, τ(σ)→ ε,
where w.l.o.g. we assume bxc ∩ bσc = ∅ and the expression wir(kσy ) : τ(σ)→
ar(L) is the wiring uniquely determined by kσy : |ar(b)| → |σ|.

– JG|HKσ = ∇•,τ(σ) ; JGKσ ⊗ JHKσ : •, τ(σ)→ ε

– J(ν x : s)GKσ = JGKσ : •, τ(σ)→ ε if x : s 6∈ fn(G)

– J(ν x : s)GKσ = (∇• ; id• ⊗ νs) ⊗ idτ(σ) ; JGKx:s,σ : •, τ(σ) → ε otherwise,
where w.l.o.g. we assume x : s 6∈ bσc.

Note that although J0Kσ and Jx : sKσ are defined in the same way, the first is
defined for any σ, while the second one is defined only if x : s ∈ σ.

Theorem 2 (cf. [3]). Let G and H be two terms such that G ≡D H iff for any
assignment σ we have JGKσ = JHKσ.

Contrary to the encoding in § 3.1 the encoding applies to a restricted class
of terms and is not surjective: The crucial fact is that the scoping discipline of
restriction restricts the visibility of a localised nodes x : s in such a way that it
cannot be used from edges outside the one where (ν x : s) appears, but such a
node scoping discipline has no counterpart in gs-graphs. This fact suggests that
our algebra can serve to characterise exactly those term graphs with well-scoped
references to nodes.

We conclude by sketching in Fig. 4 the gs-graphs corresponding to the two
hierarchical graphs in Fig. 1: A[(νw)(a〈x,w〉 | a〈w, y〉)]〈x, y〉 on the left, and
(νw)(Au,v[G]〈x, y〉 | Au,v[G]〈y, x〉 ) on the right (for G = a〈u,w〉 | a〈w, v〉).
The drawing is decorated with: an external dashed line enclosing the gs-graph
and emphasising its interface, the names of free nodes available, some dotted
lines suggesting the correspondence between actual and formal parameters of
A-labelled edges. Such a decoration is not part of the formal definition and has
the only purpose to ease the intuitive correspondence with Fig. 1.

5 This also means that in any occurrence of Lx[G] the list x has no repetitions.
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Fig. 4. Hierarchical structure as gs-monoidal terms

4 Applications to Service-Oriented Systems

This section presents one possible application of our approach, namely the
graphical encoding of process calculi. We first discuss some methodological
aspects and then show two examples, where the emphasis is respectively on the
hierarchical nature of transactions and sessions.

4.1 Encoding methodology

The main idea for defining graphical encoding of process calculi is to interpret
process constructors as derived operators of our algebra. In that manner, each
process term corresponds to a graph term, and hence to a hierarchical and
gs-graph offering both a top and a side view of the same process. Moreover, if
the interpretation faithfully captures the structural congruence of the calculus
with the axioms of the graph algebra we obtain a nice result: congruent processes
uniquely correspond to isomorphic graphs, and vice versa.

Each derived operator defines thus a graph operation that introduces items
(nodes and edges). The first step of our methodology is fixing the set of node sorts,
edge labels and design labels. Nodes are typically used to represent channels and
control points and are sorted accordingly, while plain edges represent constructs
such as atomic activities. Instead, inherently hierarchical constructors like session
and transaction scopes are represented by designs.

Moreover, other design sorts can be introduced (i.e. one for each syntactical
category of the calculus) to play the role of type annotations and constrain the
applicability of derived operators, but they must be removed once the graphs
are composed. For instance, parallel composition and non-deterministic choices
are typically interpreted as graph operations that do not introduce any graph
item, thus reflecting the axioms associated to such operations (associativity and
commutativity).
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The removal of such annotations is done by introducing flattening axioms,
which implicitly remove (by performing some kind of hyper-edge replacement [12])
those edges satisfying a specific membership predicate (i.e. being typed with the
annotation sorts).

Definition 12 (flattening axiom). The flattening axiom flatL for a design
label L is Lx[G]〈y〉 ≡ G{y/x}.

It is evident that when flatL is considered, then L-labelled edges are immaterial.
Flattening is fundamental in order to characterise classes of graphs by means
of derived operators. Indeed, flattening is used in all encondings, where some
design labels are used just for the sake of composing various classes of processes
and not really to build scopes. So nesting has two roles: as a means to enclose a
graph and as a sort of typed interface to enable disciplined graph compositions.
The presence of flattening axioms makes the first role immaterial.

Another kind of axioms that are sometimes useful to be included in the
structural congruence are extrusion axioms.

Definition 13 (extrusion axiom). The extrusion axiom extrL for a design
label L is Lx[(νz)G〈y〉] ≡ (νz)Lx[G]〈y〉, where z 6∈ bxc ∪ byc.

Extrusion axioms are needed to handle those calculi in which name restriction
is not localised inside a scope or it is allowed to cross the boundaries of some
scopes, as it may happen for some process calculi. Indeed, we shall see in § 4.3
how extrusion axioms are used to capture extrusion for some scope constructs.

Note that the addition of axiom flatL also implies the validity of axiom extrL,
hence in the following we assume that for each label L exactly one of the following
cases applies: either only the extrusion or only the flattening axiom for L is
present; or none of flatL and extrL is present. Of course the presence of such
axioms for a chosen set of labels is often fundamental for the soundness of the
encoding.

4.2 Transaction Workflows

We consider in this section the nested sagas with programmable compensations
of [6], a calculus for long running transactions that aims at providing a core
language for composing activities into sagas (atomic transactions) or processes
(non-atomic compensable activities). Formally, the syntax of sagas is as follows.

Definition 14 (sagas syntax). Let Λ be a set of atomic activities ranged over
by a. The sets S of sagas and P of compensable processes are all the terms
generated by S and P in the grammar below, respectively.

S ::= a | {P} P ::= S%S | P ;P | P | P

For the sake of simplicity, with respect to the original presentation we ne-
glect the introduction of nil processes and non-compensable activities. A saga
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Fig. 5. Type graph for sagas

is an atomic activity or an arbitrarily complex transaction built out from a
compensable processes. A basic process A%B is built by declaring a saga A as
an ordinary flow and equipping it with another saga B as its compensation flow.
The calculus provides also primitives for composing processes in sequence and
parallel (split&join).

Definition 15 (sagas structural congruence). The structural congruence
for sagas is the relation ≡S⊆ P ×P, closed under sagas construction, inductively
generated by the following set of axioms (for any P,Q,R ∈ P):

P ; (Q;R) ≡ (P ;Q);R (sA1)
P | Q ≡ Q | P (sA2)

P | (Q | R) ≡ (P | Q) | R (sA3)

Encoding sagas. We now define the graphical encoding of sagas. As explained,
the first step is to interpret syntactical categories of the calculus as suitable
design labels and constructors as derived operators over our graph algebra. In
this case we decide to introduce design labels N for Nested sagas, S for Sagas,
P for compensable Pairs and T (Transactions) for compensable processes. Note
that N can be read as a subsort of S, while P as a subsort of T . Figure 5
illustrates the shapes of the nodes and boxes we shall exploit. We have chosen an
arity of four tentacles for pairs and transactions to denote the following control
points: entry of the ordinary flow (incoming filled arrow), exit of the ordinary
flow (outgoing filled arrow), entry of the compensation flow (incoming empty
arrow) and exit of the compensation flow (outgoing empty arrow). Activities and
sagas are represented by edges with only two tentacles (for the ordinary flow).
Note that we have actually a family of activity edges, one for each activity in Λ.
Since S and T are just used for composition, we let the flattening axioms flatS
and flatT hold (whence the dotted borders in Fig. 5).

The encoding is formally defined as follows (cf. Fig. 6).

Definition 16 (sagas encoding). The interpretation of the sagas operators
over the design algebra is given by

a def= Sp,q[a〈p, q〉]
{Q} def= Np,q[(νt)Q〈p, q, t, q〉]

A % B def= Pp,q,r,s[A〈p, q〉 | B〈r, s〉]
Q ; R def= Tp,q,r,s[(νu, v)(Q〈p, u, v, s〉 | R〈u, q, r, v〉)]
Q | R def= Tp,q,r,s[Q〈p, q, r, s〉 | R〈p, q, r, s〉]
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Fig. 6. Graphical interpretation for sagas.

Note again that some primitives of the calculus are considered as material
in the encoding, i.e. represented by graph items like edges. This is the case of
activities as shown in Fig. 5 and also of compensable pairs and nested sagas.
Instead, sequencing and parallel composition (see Fig. 6) are immaterial and
their associated axioms are captured by the flattening axioms.

The proposed encoding is sound and complete, i.e. equivalent processes and
sagas are mapped into isomorphic graphs as shown in [4].

Proposition 3 (cf. [4]). For any Q,R ∈ P we have Q ≡S R iff Q ≡D R.

Example 3. Consider the following example, inspired from [6] of the saga

{acceptOrder%refuseOrder ; ( updateCredit%refundOrder |
prepareOrder%updateStock) |
{addPoints%skip}%{substractPoints%skip} ) }

The saga is used for modelling a scenario for dealing with purchase orders.
The initial activity (acceptOrder) handles requests from clients. The next three
processes are executed in parallel. The first one (updateCredit) charges the amount
of the order to the balance of the client. The second one (prepareOrder) handles
the packaging of the order and updates the stock. The third one deals with point
reward activities: it is formed by a nested saga to update the reward balance
of a user (part of a program for accumulating points with purchases). All the
activities have a corresponding compensation to undo the actions performed
by the successful completion of the activities. Note that activity addPoints has
a vacuous compensation (skip) to avoid aborting the purchase when the point
accumulation activity aborts due to the absence of a reward account (idem for
activity substractPoints). The corresponding hierarchical graph is in Fig. 7.
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Fig. 7. Graphical encoding of a saga

4.3 Service Sessions

This section sketches the graphical representation of CaSPiS [2], a session-centred
calculus developed within Sensoria. We have chosen this calculus since it
represents a non-trivial example of the interplay between nesting and linking
introduced by nested sessions, pipelines and communication. We briefly overview
CaSPiS and we refer the interested readers to [2] for an exhaustive description.
We remark that we focus here on the close-free fragment of the calculus and we
present a slightly simplified syntax. Both decisions are for the sake of a convenient
and clean presentation and constitute no limitation.

Definition 17 (CaSPiS syntax). Let Z be a set of session names, S a set of
service names and V a set of value names. The set P of processes consists of all
the terms generated by P in the grammar below

P ::= 0 | r . P | P > Q | (νw)P | P | P | A.P
A ::= s | s | (?x) | 〈u〉 | 〈u〉↑

where s ∈ S, r ∈ Z, u ∈ V, w ∈ V ∪ Z and x is a value variable.

Service definitions and invocations are written like input and output prefixes
in CCS. Thus s.P defines a service s that can be invoked by s.Q. Synchronisation
of s.P and s.Q leads to the creation of a new session, identified by a fresh name
r that can be viewed as a private, synchronous channel binding caller and callee.
Since client and service may be far apart, a session naturally comes with two
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sides, written r.P , and r.Q, with r bound somewhere above them by (νr). Rules
governing creation and scoping of sessions are based on those of the restriction
operator in the π-calculus. Note that nested invocations to services yield separate
sessions and thus hierarchies of nested sessions.

When two partner sides r . P and r . Q are deployed, intra-session communi-
cation is done via input and output actions 〈u〉 and (?x): values produced by P
can be consumed by Q, and vice versa.

Values can be returned outside a session to the enclosing environment using
the return operator 〈 · 〉↑. Return values can be consumed by other sessions sides,
or used locally to invoke other services, to start new activities. Local consumption
is achieved using the pipeline operator P > Q . Here, a new instance of process
Q is activated each time P emits a value that Q can consume. Notably, the new
instance of Q runs within the same session as P > Q, not in a fresh one.

Summarising, each CaSPiS process can be thought of as running in an
environment providing it different means of communication: one channel for
“standard” input, one channel for “standard” output and one channel for returning
values one level up.

Example 4. Consider the process (νa)(νb)(a.(P1|b.P2)|a.P3|b.P4). It represents
a typical situation where two sessions a and b have been created (e.g. upon two
service invocations). Agent a. (P1|b .P2) participates to sessions a and b (assume
P1 is the protocol for a and P2 the one for b), with the b side nested in a. The
counter-party protocols for a and b are P3 and P4, respectively, and they run
separately. Notably, values returned one level up by P2 can be consumed by P3.

Definition 18 (CaSPiS structural congruence). The structural congruence
for CaSPiS processes is the relation ≡C⊆ P×P, closed under process construction,
inductively generated by the following set of axioms

P | (Q | R) ≡ (P | Q) | R) (CA1) P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn(P ) (CA6)
P | Q ≡ Q | P (CA2) ((νn)Q) > P ≡ (νn)(Q > P ) if n 6∈ fn(P ) (CA7)
P | 0 ≡ P (CA3) A.(νn)P ≡ (νn)A.P if n 6∈ A (CA8)

(νn)(νm)P ≡ (νm)(νn)P (CA4) r . (νn)P ≡ (νn)r . P if n 6= r (CA9)
(νn)0 ≡ 0 (CA5) (νn)P ≡ (νm)P{m/n} if m 6∈ fn(P ) (CA10)

(?x).P ≡ (?y).P{y/x} if y 6∈ fn(P ) (CA11)

Encoding CaSPiS. We first define the alphabets of edge labels and nodes. The
set D of design labels is composed by P , S, D, I, F and T which respectively
stand for Parallel processes, Sessions, service Definitions, service Invocations and
pipes (From and To). The set E of edge labels contains def (service definition),
inv (service invocation), in (input), out (output) and ret (return). The node sorts
considered are ◦ (channels), • (control points), ∗ (service names, i.e. S) and �
(values, i.e. V). We assume that for each session name r there is a corresponding
channel node.

The graphical representation of each design and edge label and their respective
ranks can be found in Fig. 8. For instance, designs of type P are all of the form
Pp,t,o,i[G] where p is the control point representing the process start of execution,
t is the returning channel, o is the output channel and i is the input channel. Vice
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Fig. 8. Type graph for CaSPiS.

versa, designs of type D and I only expose the starting point of execution: they
are not strictly necessary for the encoding, but can be very useful for visualisation
purposes (they enclose the interaction protocols between callers and callees).
We let the flattening axiom flatP hold, together with extrusion axioms extrS,
extrD, extrI, extrF. Hence, edges of type P are immaterial (they can be considered
as type annotations) and edges of type T define the only rigid hierarchy w.r.t.
containment and name scoping. Other explicit hierarchies for edge containment
are given by session nesting (S), service definition (D), service invocation (I) and
pipelining (F ). As usual, flattening processes allows for getting rid of the axioms
for parallel composition (see [15]). The presence of extrusion axioms is motivated
by the structural congruence axioms of CaSPiS, namely CA7 motivates extrF,
CA8 motivates both extrD and extrI, and CA9 motivates extrS. Note that we use
dashed border for designs for which the extrusion axiom hold, while designs to
be flattened are depicted with dotted borders.

Definition 19 (CaSPiS encoding). The interpretation of CaSPiS operators
over the design algebra is given by

s.Q def= Pp,t,o,i[ t|o|i|D[ (νq, t′, o′, i′)(def〈p, s, q〉|Q〈q, t′, o′, i′〉) ]〈p〉 ]
s.Q def= Pp,t,o,i[ t|o|i| I[ (νq, t′, o′, i′)(inv〈p, s, q〉|Q〈q, t′, o′, i′〉) ]〈p〉 ]

r . Q def= Pp,t,o,i[ t|i|S[Q〈p, o, r, r〉 ]〈p, o〉 ]
Q > R def= Pp,t,o,i[ o | (νm)(F[Q〈p, t,m, i〉 ]〈p, t,m, i〉 |

T[ (νq, t′, o′)R〈q, t′, o′,m〉 ]〈m〉 ) ]
Q|R def= Pp,t,o,i[Q〈p, t, o, i〉|R〈p, t, o, i〉 ]

(νw)Q def= Pp,t,o,i[(νw)Q〈p, t, o, i〉]
0 def= Pp,t,o,i[ p|t|o|i ]

〈u〉.Q def= Pp,t,o,i[ (νq)(out〈p, q, u, o〉 |Q〈q, t, o, i〉) ]
〈u〉↑.Q def= Pp,t,o,i[ (νq)(ret〈p, q, u, t〉 |Q〈q, t, o, i〉) ]
(?x).Q def= Pp,t,o,i[ (νq, x)(in〈p, q, x, i〉 |Q〈q, t, o, i〉) ]

Proposition 4 (cf. [4]). For any Q,R ∈ P we have Q ≡C R iff Q ≡D R.
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Fig. 9. Example of session nesting.

Instead of providing the visualisation of the encoding and a detailed explana-
tion (for which we refer to [5]) we prefer to concentrate on the representation of
session nesting with the typical session situation presented before. Figure 9 depicts
the graphical representation of our example, where the graph has been further
simplified (e.g. fusing nodes, removing isolated nodes and irrelevant tentacles)
to focus on the main issues and make immediate the correspondence with the
process term. The figure evidences the hierarchy introduced by session nesting
and how it is crossed by intra-session communication. It is also worth to note
that the graph highlights the fact that the return channel of a nested session is
pipelined into the output channel of the enclosing session. More precisely, the
return channel of the immediate session where P2 lives (i.e. b) is connected to
the output channel of the session containing it, i.e. the session channel a.

5 Conclusion

This chapter collects results from [3–5]. We presented our specification formalism
based on a convenient algebra of hierarchical graphs: its features make it well-
suited for the specification of systems with inherently hierarchical aspects and in
particular, process calculi with notions of scope and containment (like ambients,
membranes, sessions and transactions). Some advantages of our approach are due
to the graph algebra, whose syntax resembles standard algebraic specifications
and, in particular, it is close to the syntax found in nominal calculi. The key point
is to exploit the algebraic structure of both designs and graphs when proving
properties of an encoding, facilitating proofs by structural induction.
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