257 research outputs found

    Graph factors modulo <i>k</i>

    Get PDF

    Stability number and f-factors in graphs

    Full text link
    We present a new sufficient condition on stability number and toughness of the graph to have an f-factor

    Vertex-Coloring 2-Edge-Weighting of Graphs

    Full text link
    A kk-{\it edge-weighting} ww of a graph GG is an assignment of an integer weight, w(e)∈{1,…,k}w(e)\in \{1,\dots, k\}, to each edge ee. An edge weighting naturally induces a vertex coloring cc by defining c(u)=∑u∼ew(e)c(u)=\sum_{u\sim e} w(e) for every u∈V(G)u \in V(G). A kk-edge-weighting of a graph GG is \emph{vertex-coloring} if the induced coloring cc is proper, i.e., c(u)≠c(v)c(u) \neq c(v) for any edge uv∈E(G)uv \in E(G). Given a graph GG and a vertex coloring c0c_0, does there exist an edge-weighting such that the induced vertex coloring is c0c_0? We investigate this problem by considering edge-weightings defined on an abelian group. It was proved that every 3-colorable graph admits a vertex-coloring 33-edge-weighting \cite{KLT}. Does every 2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In particular, we show that 3-connected bipartite graphs admit vertex-coloring 2-edge-weighting

    Degree Sequences and the Existence of kk-Factors

    Get PDF
    We consider sufficient conditions for a degree sequence π\pi to be forcibly kk-factor graphical. We note that previous work on degrees and factors has focused primarily on finding conditions for a degree sequence to be potentially kk-factor graphical. We first give a theorem for π\pi to be forcibly 1-factor graphical and, more generally, forcibly graphical with deficiency at most β≥0\beta\ge0. These theorems are equal in strength to Chv\'atal's well-known hamiltonian theorem, i.e., the best monotone degree condition for hamiltonicity. We then give an equally strong theorem for π\pi to be forcibly 2-factor graphical. Unfortunately, the number of nonredundant conditions that must be checked increases significantly in moving from k=1k=1 to k=2k=2, and we conjecture that the number of nonredundant conditions in a best monotone theorem for a kk-factor will increase superpolynomially in kk. This suggests the desirability of finding a theorem for π\pi to be forcibly kk-factor graphical whose algorithmic complexity grows more slowly. In the final section, we present such a theorem for any k≥2k\ge2, based on Tutte's well-known factor theorem. While this theorem is not best monotone, we show that it is nevertheless tight in a precise way, and give examples illustrating this tightness.Comment: 19 page

    Sampling and Reconstruction of Signals on Product Graphs

    Full text link
    In this paper, we consider the problem of subsampling and reconstruction of signals that reside on the vertices of a product graph, such as sensor network time series, genomic signals, or product ratings in a social network. Specifically, we leverage the product structure of the underlying domain and sample nodes from the graph factors. The proposed scheme is particularly useful for processing signals on large-scale product graphs. The sampling sets are designed using a low-complexity greedy algorithm and can be proven to be near-optimal. To illustrate the developed theory, numerical experiments based on real datasets are provided for sampling 3D dynamic point clouds and for active learning in recommender systems.Comment: 5 pages, 3 figure
    • …
    corecore